skip to main content


Search for: All records

Creators/Authors contains: "Young, David R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present new spectroscopic and photometric follow-up observations of the known sample of extreme coronal line-emitting galaxies (ECLEs) identified in the Sloan Digital Sky Survey (SDSS). With these new data, observations of the ECLE sample now span a period of two decades following their initial SDSS detections. We confirm the non-recurrence of the iron coronal line signatures in five of the seven objects, further supporting their identification as the transient light echoes of tidal disruption events (TDEs). Photometric observations of these objects in optical bands show little overall evolution. In contrast, mid-infrared (MIR) observations show ongoing long-term declines consistent with power-law decay. The remaining two objects had been classified as active galactic nuclei (AGNs) with unusually strong coronal lines rather than being TDE related, given the persistence of the coronal lines in earlier follow-up spectra. We confirm this classification, with our spectra continuing to show the presence of strong, unchanged coronal line features and AGN-like MIR colours and behaviour. We have constructed spectral templates of both subtypes of ECLE to aid in distinguishing the likely origin of newly discovered ECLEs. We highlight the need for higher cadence, and more rapid, follow-up observations of such objects to better constrain their properties and evolution. We also discuss the relationships between ECLEs, TDEs, and other identified transients having significant MIR variability.

     
    more » « less
  2. ABSTRACT

    We present a photometric and spectroscopic analysis of the ultraluminous and slowly evolving 03fg-like Type Ia SN 2021zny. Our observational campaign starts from ∼5.3 h after explosion (making SN 2021zny one of the earliest observed members of its class), with dense multiwavelength coverage from a variety of ground- and space-based telescopes, and is concluded with a nebular spectrum ∼10 months after peak brightness. SN 2021zny displayed several characteristics of its class, such as the peak brightness (MB = −19.95 mag), the slow decline (Δm15(B) = 0.62 mag), the blue early-time colours, the low ejecta velocities, and the presence of significant unburned material above the photosphere. However, a flux excess for the first ∼1.5 d after explosion is observed in four photometric bands, making SN 2021zny the third 03fg-like event with this distinct behaviour, while its +313 d spectrum shows prominent [O i] lines, a very unusual characteristic of thermonuclear SNe. The early flux excess can be explained as the outcome of the interaction of the ejecta with $\sim 0.04\, \mathrm{M_{\odot }}$ of H/He-poor circumstellar material at a distance of ∼1012 cm, while the low ionization state of the late-time spectrum reveals low abundances of stable iron-peak elements. All our observations are in accordance with a progenitor system of two carbon/oxygen white dwarfs that undergo a merger event, with the disrupted white dwarf ejecting carbon-rich circumstellar material prior to the primary white dwarf detonation.

     
    more » « less
  3. ABSTRACT

    We present photometric and spectroscopic observations and analysis of SN 2021bxu (ATLAS21dov), a low-luminosity, fast-evolving Type IIb supernova (SN). SN 2021bxu is unique, showing a large initial decline in brightness followed by a short plateau phase. With $M_r = -15.93 \pm 0.16\, \mathrm{mag}$ during the plateau, it is at the lower end of the luminosity distribution of stripped-envelope supernovae (SE-SNe) and shows a distinct ∼10 d plateau not caused by H- or He-recombination. SN 2021bxu shows line velocities which are at least $\sim 1500\, \mathrm{km\, s^{-1}}$ slower than typical SE-SNe. It is photometrically and spectroscopically similar to Type IIb SNe during the photospheric phases of evolution, with similarities to Ca-rich IIb SNe. We find that the bolometric light curve is best described by a composite model of shock interaction between the ejecta and an envelope of extended material, combined with a typical SN IIb powered by the radioactive decay of 56Ni. The best-fitting parameters for SN 2021bxu include a 56Ni mass of $M_{\mathrm{Ni}} = 0.029^{+0.004}_{-0.005}\, \mathrm{{\rm M}_{\odot }}$, an ejecta mass of $M_{\mathrm{ej}} = 0.61^{+0.06}_{-0.05}\, \mathrm{{\rm M}_{\odot }}$, and an ejecta kinetic energy of $K_{\mathrm{ej}} = 8.8^{+1.1}_{-1.0} \times 10^{49}\, \mathrm{erg}$. From the fits to the properties of the extended material of Ca-rich IIb SNe we find a trend of decreasing envelope radius with increasing envelope mass. SN 2021bxu has MNi on the low end compared to SE-SNe and Ca-rich SNe in the literature, demonstrating that SN 2021bxu-like events are rare explosions in extreme areas of parameter space. The progenitor of SN 2021bxu is likely a low-mass He star with an extended envelope.

     
    more » « less
  4. Abstract

    We present early observations and analysis of the double-peaked Type IIb supernova (SN IIb) SN 2021zby. TESS captured the prominent early shock-cooling peak of SN 2021zby within the first ∼10 days after explosion with a 30 minute cadence. We present optical and near-infrared spectral series of SN 2021zby, including three spectra during the shock-cooling phase. Using a multiband model fit, we find that the inferred properties of its progenitor are consistent with a red supergiant or yellow supergiant, with an envelope mass of ∼0.30–0.65Mand an envelope radius of ∼120–300R. These inferred progenitor properties are similar to those of other SNe IIb with a double-peaked feature, such as SNe 1993J, 2011dh, 2016gkg, and 2017jgh. This study further validates the importance of the high cadence and early coverage in resolving the shape of the shock-cooling light curve, while the multiband observations, particularly UV, are also necessary to fully constrain the progenitor properties.

     
    more » « less
  5. null (Ed.)
  6. Abstract We present high-cadence optical, ultraviolet (UV), and near-infrared data of the nearby ( D ≈ 23 Mpc) Type II supernova (SN) 2021yja. Many Type II SNe show signs of interaction with circumstellar material (CSM) during the first few days after explosion, implying that their red supergiant (RSG) progenitors experience episodic or eruptive mass loss. However, because it is difficult to discover SNe early, the diversity of CSM configurations in RSGs has not been fully mapped. SN 2021yja, first detected within ≈ 5.4 hours of explosion, shows some signatures of CSM interaction (high UV luminosity and radio and x-ray emission) but without the narrow emission lines or early light-curve peak that can accompany CSM. Here we analyze the densely sampled early light curve and spectral series of this nearby SN to infer the properties of its progenitor and CSM. We find that the most likely progenitor was an RSG with an extended envelope, encompassed by low-density CSM. We also present archival Hubble Space Telescope imaging of the host galaxy of SN 2021yja, which allows us to place a stringent upper limit of ≲ 9 M ☉ on the progenitor mass. However, this is in tension with some aspects of the SN evolution, which point to a more massive progenitor. Our analysis highlights the need to consider progenitor structure when making inferences about CSM properties, and that a comprehensive view of CSM tracers should be made to give a fuller view of the last years of RSG evolution. 
    more » « less
  7. Abstract We present the 30 minutes cadence Kepler/K2 light curve of the Type Ia supernova (SN Ia) SN 2018agk, covering approximately one week before explosion, the full rise phase, and the decline until 40 days after peak. We additionally present ground-based observations in multiple bands within the same time range, including the 1 day cadence DECam observations within the first ∼5 days after the first light. The Kepler early light curve is fully consistent with a single power-law rise, without evidence of any bump feature. We compare SN 2018agk with a sample of other SNe Ia without early excess flux from the literature. We find that SNe Ia without excess flux have slowly evolving early colors in a narrow range ( g − i ≈ −0.20 ± 0.20 mag) within the first ∼10 days. On the other hand, among SNe Ia detected with excess, SN 2017cbv and SN 2018oh tend to be bluer, while iPTF16abc’s evolution is similar to normal SNe Ia without excess in g − i . We further compare the Kepler light curve of SN 2018agk with companion-interaction models, and rule out the existence of a typical nondegenerate companion undergoing Roche lobe overflow at viewing angles smaller than 45°. 
    more » « less