skip to main content


Search for: All records

Creators/Authors contains: "Yu, Ting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Free, publicly-accessible full text available June 12, 2024
  3. We report a high-finesse bow-tie cavity designed for atomic physics experiments with Rydberg atom arrays. The cavity has a finesse of 51,000 and a waist of 7.1μm at the cesium D2 line (852 nm). With these parameters, the cavity is expected to induce strong coupling between a single atom and a single photon, corresponding to a cooperativity per traveling mode of 35 at the cavity waist. To trap and image atoms, the cavity setup utilizes two in-vacuum aspheric lenses with a numerical aperture (NA) of 0.35 and is capable of housingNA = 0.5 microscope objectives. In addition, the large atom-mirror distance (≳<#comment/>1.5cm) provides good optical access and minimizes stray electric fields at the position of the atoms. This cavity setup can operate in tandem with a Rydberg array platform, creating a fully connected system for quantum simulation and computation.

     
    more » « less
  4. We investigate dynamical generation of macroscopic nonlocal entanglements between two remote massive magnon–superconducting-circuit hybrid systems. Two fiber-coupled microwave cavities are employed to serve as an interaction channel connecting two sets of macroscopic hybrid units, each containing a magnon (hosted by an yttrium–iron–garnet sphere) and a superconducting-circuit qubit. Surprisingly, it is found that stronger coupling does not necessarily mean faster entanglement generation. The proposed hybrid system allows the existence of an optimal fiber coupling strength that requires the shortest amount of time to generate a systematic maximal entanglement. Our theoretical results are shown to be within the scope of specific parameters that can be achieved with current technology. The noise effects on the implementation of systems are also treated in a general environment, suggesting the robustness of entanglement generation. Our discrete-variable qubit-like entanglement theory of magnons may lead to direct applications in various quantum information tasks.

     
    more » « less
  5. All-solid-state batteries (ASSBs) are viewed as promising next-generation energy storage devices, due to their enhanced safety by replacing organic liquid electrolytes with non-flammable solid-state electrolytes (SSEs). The high ionic conductivity and low Young's modulus of sulfide SSEs make them suitable candidates for commercial ASSBs. Nevertheless, sulfide SSEs are generally reported to be unstable in ambient air. Moreover, instead of gloveboxes used for laboratory scale studies, large scale production of batteries is usually conducted in dry rooms. Thus, this study aims to elucidate the chemical evolution of a sulfide electrolyte, Li 6 PS 5 Cl (LPSCl), during air exposure and to evaluate its dry room compatibility. When LPSCl is exposed to ambient air, hydrolysis, hydration, and carbonate formation can occur. Moreover, hydrolysis can lead to irreversible sulfur loss and therefore LPSCl cannot be fully recovered in the subsequent heat treatment. During heat treatment, exposed LPSCl undergoes dehydration, decomposition of carbonate species, and reformation of the LPSCl phase. Finally, LPSCl was found to exhibit good stability in a dry room environment and was subject to only minor conductivity loss due to carbonate formation. The dry room exposed LPSCl sample was tested in a LiNi 0.8 Co 0.1 Mn 0.1 O 2 |LiIn half-cell, exhibiting no significant loss of electrochemical performance compared with the pristine LPSCl, proving it to be compatible with dry room manufacturing processes. 
    more » « less
  6. null (Ed.)