skip to main content


Search for: All records

Creators/Authors contains: "Yung, L. Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present measurements of the rest-frame UV spectral slope,β, for a sample of 36 faint star-forming galaxies atz∼ 9–16 discovered in one of the deepest JWST NIRCam surveys to date, the Next Generation Deep Extragalactic Exploratory Public Survey. We use robust photometric measurements for UV-faint galaxies (down toMUV∼ −16), originally published in Leung et al., and measure values of the UV spectral slope via photometric power-law fitting to both the observed photometry and stellar population models obtained through spectral energy distribution (SED) fitting withBagpipes. We obtain a median and 68% confidence interval forβfrom photometric power-law fitting ofβPL=2.70.5+0.5and from SED fitting,βSED=2.30.1+0.2for the full sample. We show that when only two to three photometric detections are available, SED fitting has a lower scatter and reduced biases than photometric power-law fitting. We quantify this bias and find that after correction the medianβSED,corr=2.50.2+0.2. We measure physical properties for our galaxies withBagpipesand find that our faint (MUV=18.10.9+0.7) sample is low in mass (log[M*/M]=7.70.5+0.5), fairly dust-poor (Av=0.10.1+0.2mag), and modestly young (log[age]=7.80.8+0.2yr) with a median star formation rate oflog(SFR)=0.30.4+0.4Myr1. We find no strong evidence for ultrablue UV spectral slopes (β∼ −3) within our sample, as would be expected for exotically metal-poor (Z/Z< 10−3) stellar populations with very high Lyman continuum escape fractions. Our observations are consistent with model predictions that galaxies of these stellar masses atz∼ 9–16 should have only modestly low metallicities (Z/Z∼ 0.1–0.2).

     
    more » « less
  2. ABSTRACT

    We present a spectroscopic survey of Ly α emitters in the Extended Groth Strip (EGS) field, targeting the regime near the Epoch of Reionization. Using Keck/DEep Imaging Multi-Object Spectrograph, we observed 947 high-z candidates with photometric redshifts from 3 < zphot < 7 and down to an H-band (Hubble Space Telescope/Wide Field Camera 3 F160W) magnitude limit of <27.5. Observations were taken over the course of eight nights, with integration times ranging from 4 to 7.8 h. Our survey secured 137 unique redshifts, 126 of which are Ly α emitters at 2.8 < z < 6.3 with a mean redshift of $\overline{z} = 4.3$. We provide a comprehensive redshift catalogue for our targets, as well as the reduced one- and two-dimensional spectra for each object. These observations will provide an important auxiliary data set for the JWST Directors Discretionary Early Release Science programme the Cosmic Evolution Early Release Science Survey, which recently completed near- and mid-infrared imaging and spectroscopy of galaxies in the EGS field.

     
    more » « less
  3. Abstract

    The selection of high-redshift galaxies often involves spectral energy distribution (SED) fitting to photometric data, an expectation for contamination levels, and measurement of sample completeness—all vetted through comparison to spectroscopic redshift measurements of a sub-sample. The first JWST data are now being taken over several extragalactic fields to different depths and across various areas, which will be ideal for the discovery and classification of galaxies out to distances previously uncharted. As spectroscopic redshift measurements for sources in this epoch will not be initially available to compare with the first photometric measurements ofz> 8 galaxies, robust photometric redshifts are of the utmost importance. Galaxies atz> 8 are expected to have bluer rest-frame ultraviolet (UV) colors than typically used model SED templates, which could lead to catastrophic photometric redshift failures. We use a combination of BPASS andCloudymodels to create a supporting set of templates that match the predicted rest-UV colors ofz> 8 simulated galaxies. We test these new templates by fitting simulated galaxies in a mock catalog, Yung et al., which mimic expected field depths and areas of the JWST Cosmic Evolution Early Release Science Survey (m5σ∼ 28.6 over ∼100 arcmin2). We use EAZY to highlight the improvements in redshift recovery with the inclusion of our new template set and suggest criteria for selecting galaxies at 8 <z< 10 with the JWST, providing an important test case for observers venturing into this new era of astronomy.

     
    more » « less
  4. Abstract

    As the next generation of large galaxy surveys come online, it is becoming increasingly important to develop and understand the machine-learning tools that analyze big astronomical data. Neural networks are powerful and capable of probing deep patterns in data, but they must be trained carefully on large and representative data sets. We present a new “hump” of the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project: CAMELS-SAM, encompassing one thousand dark-matter-only simulations of (100h−1cMpc)3with different cosmological parameters (Ωmandσ8) and run through the Santa Cruz semi-analytic model for galaxy formation over a broad range of astrophysical parameters. As a proof of concept for the power of this vast suite of simulated galaxies in a large volume and broad parameter space, we probe the power of simple clustering summary statistics to marginalize over astrophysics and constrain cosmology using neural networks. We use the two-point correlation, count-in-cells, and void probability functions, and we probe nonlinear and linear scales across 0.68 <R<27h−1cMpc. We find our neural networks can both marginalize over the uncertainties in astrophysics to constrain cosmology to 3%–8% error across various types of galaxy selections, while simultaneously learning about the SC-SAM astrophysical parameters. This work encompasses vital first steps toward creating algorithms able to marginalize over the uncertainties in our galaxy formation models and measure the underlying cosmology of our Universe. CAMELS-SAM has been publicly released alongside the rest of CAMELS, and it offers great potential to many applications of machine learning in astrophysics:https://camels-sam.readthedocs.io.

     
    more » « less
  5. Abstract

    We present a 0.3–4.5μm 16-band photometric catalog for the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers an ∼27 deg2field within the footprint of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). Here we present new DECam imaging and anrizKsband–selected catalog of four million sources extracted using a fully model-based approach. We validate our photometry by comparing with the model-based DECam Legacy Survey. We analyze the differences between model-based and aperture photometry by comparing with the previous SHELA catalog, finding that our model-based photometry can measure point sources to fainter fluxes and better capture the full emission of resolved sources. The catalog is 80% (50%) complete atriz∼ 24.7 (25.1) AB mag, and the optical photometry reaches a 5σdepth of ∼25.5 AB mag. We measure photometric redshifts and achieve a 1σscatter of Δz/(1 +z) of 0.04 with available spectroscopic redshifts at 0 ≤z≤ 1. This large-area, multiwavelength photometric catalog, combined with spectroscopic information from HETDEX, will enable a wide range of extragalactic science investigations.

     
    more » « less
  6. Abstract We present a sample of 30 massive (log( M * / M ⊙ ) > 11) z = 3–5 quiescent galaxies selected from the Spitzer-HETDEX Exploratory Large Area (SHELA) Survey and observed at 1.1 mm with Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations. These ALMA observations would detect even modest levels of dust-obscured star formation, on the order of ∼20 M ⊙ yr −1 at z ∼ 4 at the 1 σ level, allowing us to quantify the amount of contamination from dusty star-forming sources in our quiescent sample. Starting with a parent sample of candidate massive quiescent galaxies from the Stevans et al. v1 SHELA catalog, we use the Bayesian B agpipes spectral energy distribution fitting code to derive robust stellar masses ( M * ) and star formation rates (SFRs) for these sources, and select a conservative sample of 36 candidate massive ( M * > 10 11 M ⊙ ) quiescent galaxies, with specific SFRs >2 σ below the Salmon et al. star-forming main sequence at z ∼ 4. Based on the ALMA imaging, six of these candidate quiescent galaxies show the presence of significant dust-obscured star formation, and thus were removed from our final sample. This implies a ∼17% contamination rate from dusty star-forming galaxies with our selection criteria using the v1 SHELA catalog. This conservatively selected quiescent galaxy sample at z = 3–5 will provide excellent targets for future observations to constrain better how massive galaxies can both grow and shut down their star formation in a relatively short period. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  7. Abstract The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides Hubble Space Telescope (HST)/UVIS F275W imaging for four CANDELS fields. We combine this UV imaging with existing HST/near-IR grism spectroscopy from 3D-HST+AGHAST to directly compare the resolved rest-frame UV and H α emission for a sample of 979 galaxies at 0.7 < z < 1.5, spanning a range in stellar mass of 10 8−11.5 M ⊙ . Using a stacking analysis, we perform a resolved comparison between homogenized maps of rest-UV and H α to compute the average UV-to-H α luminosity ratio (an indicator of burstiness in star formation) as a function of galactocentric radius. We find that galaxies below stellar mass of ∼10 9.5 M ⊙ , at all radii, have a UV-to-H α ratio higher than the equilibrium value expected from constant star formation, indicating a significant contribution from bursty star formation. Even for galaxies with stellar mass ≳10 9.5 M ⊙ , the UV-to-H α ratio is elevated toward their outskirts ( R / R eff > 1.5), suggesting that bursty star formation is likely prevalent in the outskirts of even the most massive galaxies, but is likely overshadowed by their brighter cores. Furthermore, we present the UV-to-H α ratio as a function of galaxy surface brightness, a proxy for stellar mass surface density, and find that regions below ∼10 7.5 M ⊙ kpc −2 are consistent with bursty star formation, regardless of their galaxy stellar mass, potentially suggesting that local star formation is independent of global galaxy properties at the smallest scales. Last, we find galaxies at z > 1.1 to have bursty star formation, regardless of radius or surface brightness. 
    more » « less
    Free, publicly-accessible full text available July 24, 2024
  8. ABSTRACT

    The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne cryogenic telescope that will survey the spectrum of diffuse emission from both the Milky Way and the cosmic web to probe star formation, the interstellar medium, and galaxy evolution across cosmic time. EXCLAIM’s primary extragalactic science survey maps 305 deg2 along the celestial equator with an R = 512 spectrometer over the frequency range ν = 420 − 540 GHz, targeting emission of the [C ii] line over redshifts 2.5 < z < 3.5 and several CO lines for z < 1. Cross-correlation with galaxy redshift catalogues isolates line emission from the large-scale structure at target redshifts. In this paper, we forecast the sensitivity for both the two-point and conditional one-point cross-correlation. We predict that EXCLAIM will detect both the [C ii]-QSO cross-power spectrum and the conditional voxel intensity distribution (CVID) at various redshifts under a broad range of [C ii] intensity models, allowing it to differentiate among these models in the literature. These forecasts for the power spectra include the effects of line interlopers and continuum foreground contamination. We then convert the joint [C ii] constraints from both the cross-power spectrum and the CVID into constraints on the [C ii] halo luminosity–mass relation $L_\mathrm{[C\, \small {II}]}(M)$ model parameters and the star formation rate density (SFRD) from [C ii] emission. We also develop sensitivity estimates for CO, showing the ability to differentiate between models.

     
    more » « less
  9. Abstract

    Spectroscopic studies of extreme-ionization galaxies (EIGs) are critical to our understanding of exotic systems throughout cosmic time. These EIGs exhibit spectral features requiring >54.42 eV photons: the energy needed to ionize helium into He2+fully and emit Heiirecombination lines. Spectroscopic studies of EIGs can probe exotic stellar populations or accretion onto intermediate-mass black holes (∼102–105M), which are the possibly key contributors to the reionization of the Universe. To facilitate the use of EIGs as probes of high-ionization systems, we focus on ratios constructed from several rest-frame UV/optical emission lines: [Oiii]λ5008, Hβ, [Neiii]λ3870, [Oii]λλ3727, 3729, and [Nev]λ3427. These lines probe the relative intensity at energies of 35.12, 13.62, 40.96, 13.62, and 97.12 eV, respectively, covering a wider range of ionization than traced by other common rest-frame UV/optical techniques. We use the ratios of these lines ([Nev]/[Neiii] ≡ Ne53, [Oiii]/Hβ, and [Neiii]/[Oii]), which are nearby in wavelength, mitigating the effects of dust attenuation and uncertainties in flux calibration. We make predictions from photoionization models constructed fromCloudythat use a broad range of stellar populations and black hole accretion models to explore the sensitivity of these line ratios to changes in the ionizing spectrum. We compare our models to observations from the Hubble Space Telescope and JWST of galaxies with strong high-ionization emission lines atz∼ 0,z∼ 2, and 5 <z< 8.5. We show that the Ne53 ratio can separate galaxies with ionization from “normal” stellar populations from those with active galactic nuclei and even “exotic” Population III models. We introduce new selection methods to identify galaxies with photoionization driven by Population III stars or intermediate-mass black hole accretion disks that could be identified in upcoming high-redshift spectroscopic surveys.

     
    more » « less