skip to main content


Search for: All records

Creators/Authors contains: "Zamkov, Mikhail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 21, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. null (Ed.)
  4. null (Ed.)
    Colloidal semiconductor nanocrystals (NCs) represent a promising class of nanomaterials for lasing applications. Currently, one of the key challenges facing the development of high-performance NC optical gain media lies in enhancing the lifetime of biexciton populations. This usually requires the employment of charge-delocalizing particle architectures, such as core/shell NCs, nanorods, and nanoplatelets. Here, we report on a two-dimensional nanoshell quantum dot (QD) morphology that enables a strong delocalization of photoinduced charges, leading to enhanced biexciton lifetimes and low lasing thresholds. A unique combination of a large exciton volume and a smoothed potential gradient across interfaces of the reported CdS bulk /CdSe/CdS shell (core/shell/shell) nanoshell QDs results in strong suppression of Auger processes, which was manifested in this work though the observation of stable amplified stimulated emission (ASE) at low pump fluences. An extensive charge delocalization in nanoshell QDs was confirmed by transient absorption measurements, showing that the presence of a bulk-size core in CdS bulk /CdSe/CdS shell QDs reduces exciton–exciton interactions. Overall, present findings demonstrate unique advantages of the nanoshell QD architecture as a promising optical gain medium in solid-state lighting and lasing applications. 
    more » « less
  5. Excitonic energy transfer is a versatile mechanism by which colloidal semiconductor nanocrystals can interact with a variety of nanoscale species. While this process is analogous to dipole–dipole coupling in molecular systems, the corresponding energy transfer dynamics can deviate from that of molecular assemblies due to manifestations of bulk-like features in semiconductor colloids. In particular, weak exciton binding, small singlet–triplet exciton splitting, and the energy disorder across nanocrystal ensembles can all play distinctive roles in the ensuing energy conversion processes. To characterize the variety of energy transfer schemes involving nanocrystals, this feature article will discuss the latest research by both our group and other groups on the key scenarios under which nanocrystals can engage in energy transfer with other nanoparticles, organic fluorophores, and plasmonic nanostructures, highlighting potential technological benefits to be gained from such processes. We will also shed light on experimental strategies for probing the energy transfer in nanocrystal-based assemblies, with a particular emphasis on novel characterization techniques. 
    more » « less