skip to main content


Search for: All records

Creators/Authors contains: "Zeimann, Gregory R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Fr 2-30 = PN? G126.8−15.5 is a faint emission nebula, hosting a 14th-mag central star that we identify here for the first time. Deep Hα and [O iii] images reveal a roughly elliptical nebula with dimensions of at least 22 arcmin × 14 arcmin, fading into a surrounding network of even fainter emission. Optical spectrograms of the central star show it to have a subdwarf O spectral type, with a Gaia parallax distance of 890 pc. A model-atmosphere analysis gives parameters of $T_{\rm eff}=60\, 000$ K, log g = 6.0, and a low helium content of nHe/nH = 0.0017. The location of the central star in the log g–Teff plane is inconsistent with a post-asymptotic-giant-branch evolutionary status. Two alternatives are that it is a helium-burning post-extreme-horizontal-branch object, or a hydrogen-burning post-red-giant-branch star. In either case, the evolutionary ages are so long that a detectable planetary nebula (PN) should not be present. We find evidence for a variable radial velocity (RV), suggesting that the star is a close binary. However, there are no photometric variations, and the spectral-energy distribution rules out a companion earlier than M2 V. The RVs of the star and surrounding nebula are discordant, and the nebula lacks typical PN morphology. We suggest that Fr 2-30 is a ‘PN mimic’ – the result of a chance encounter between the hot sdO star and an interstellar cloud. However, we note the puzzling fact that there are several nuclei of genuine PNe that are known to be in evolutionary states similar to that of the Fr 2-30 central star.

     
    more » « less
  2. Abstract

    Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 1013g s−1, with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter.

     
    more » « less
  3. Abstract

    The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is designed to detect and measure the redshifts of more than 1 million Lyαemitting galaxies (LAEs) 1.88 <z< 3.52. In addition to its cosmological measurements, these data enable studies of Lyαspectral profiles and the underlying radiative transfer. Using the roughly half a million LAEs in the HETDEX Data Release 3, we stack various subsets to obtain the typical Lyαprofile for thez∼ 2–3 epoch and to understand their physical properties. We find clear absorption wings around Lyαemission, which extend ∼2000 km s−1both redward and blueward of the central line. Using far-UV spectra of nearby (0.002 <z< 0.182) LAEs in the COS Legacy Archive Spectroscopic Survey treasury and optical/near-IR spectra of 2.8 <z< 6.7 LAEs in the Multi Unit Spectroscopic-Wide survey, we observe absorption profiles in both redshift regimes. Dividing the sample by volume density shows that the troughs increase in higher-density regions. This trend suggests that the depth of the absorption is dependent on the local density of objects near the LAE, a geometry that is similar to damped Lyαsystems. Simple simulations of Lyαradiative transfer can produce similar troughs due to absorption of light from background sources by Higas surrounding the LAEs.

     
    more » « less
  4. Long-baseline monitoring of the HAT-P-32Ab system reveals helium escaping through tidal tails 50 times the size of the planet. 
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  5. Abstract

    Supernova (SN) 2023ixf was discovered on 2023 May 19. The host galaxy, M101, was observed by the Hobby–Eberly Telescope Dark Energy Experiment collaboration over the period 2020 April 30–2020 July 10, using the Visible Integral-field Replicable Unit Spectrograph (3470 ≲λ≲ 5540 Å) on the 10 m Hobby–Eberly Telescope. The fiber filling factor within ±30″ of SN 2023ixf is 80% with a spatial resolution of 1″. Ther< 5.″5 surroundings are 100% covered. This allows us to analyze the spatially resolved preexplosion local environments of SN 2023ixf with nebular emission lines. The two-dimensional maps of the extinction and the star formation rate (SFR) surface density (ΣSFR) show weak increasing trends in the radial distributions within ther< 5.″5 regions, suggesting lower values of extinction and SFR in the vicinity of the progenitor of SN 2023ixf. The median extinction and that of the surface density of SFR withinr< 3″ areE(BV) = 0.06 ± 0.14, andΣSFR=105.44±0.66Myr1arcsec2.There is no significant change in extinction before and after the explosion. The gas metallicity does not change significantly with the separation from SN 2023ixf. The metal-rich branch of theR23calculations indicates that the gas metallicity around SN 2023ixf is similar to the solar metallicity (∼Z). The archival deep images from the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) show a clear detection of the progenitor of SN 2023ixf in thezband at 22.778 ± 0.063 mag, but nondetections in the remaining four bands of CFHTLS (u,g,r,i). The results suggest a massive progenitor of ≈22M.

     
    more » « less
  6. Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is an untargeted spectroscopic survey that aims to measure the expansion rate of the universe at z ∼ 2.4 to 1% precision for both H ( z ) and D A ( z ). HETDEX is in the process of mapping in excess of one million Ly α emitting (LAE) galaxies and a similar number of lower- z galaxies as a tracer of the large-scale structure. The success of the measurement is predicated on the post-observation separation of galaxies with Ly α emission from the lower- z interloping galaxies, primarily [O ii ], with low contamination and high recovery rates. The Emission Line eXplorer (ELiXer) is the principal classification tool for HETDEX, providing a tunable balance between contamination and completeness as dictated by science needs. By combining multiple selection criteria, ELiXer improves upon the 20 Å rest-frame equivalent width cut commonly used to distinguish LAEs from lower- z [O ii ] emitting galaxies. Despite a spectral resolving power, R ∼ 800, that cannot resolve the [O ii ] doublet, we demonstrate the ability to distinguish LAEs from foreground galaxies with 98.1% accuracy. We estimate a contamination rate of Ly α by [O ii ] of 1.2% and a Ly α recovery rate of 99.1% using the default ELiXer configuration. These rates meet the HETDEX science requirements. 
    more » « less
  7. Abstract

    The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is a large-volume spectroscopic survey without preselection of sources, searching ∼540 deg2for Lyαemitting galaxies (LAEs) at 1.9 <z< 3.5. Taking advantage of such a wide-volume survey, we perform a pilot study using early HETDEX data to search for lensed Lyαemitters (LAEs). After performing a proof of concept using a previously known lensed LAE covered by HETDEX, we perform a search for previously unknown lensed LAEs in the HETDEX spectroscopic sample. We present a catalog of 26 potential LAEs lensed by foreground, red, non-star-forming galaxies atz∼ 0.4–0.7. We estimate the magnification for each candidate system, finding 12 candidates to be within the strong lensing regime (magnificationμ> 2). Follow-up observations of these potential lensed LAEs have the potential to confirm their lensed nature and explore these distant galaxies in more detail.

     
    more » « less
  8. Abstract

    We report an active galactic nucleus (AGN) with an extremely high equivalent width (EW), EWLyα+N V,rest≳921Å, in the rest frame, atz∼ 2.24 in the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX), as a representative case of the high-EW AGN population. The continuum level is a nondetection in the HETDEX spectrum; thus the measured EW is a lower limit. The source is detected with significant emission lines (>7σ) at Lyα+ Nvλ1241, Civλ1549, and a moderate emission line (∼4σ) at Heiiλ1640 within the wavelength coverage of HETDEX (3500–5500 Å). Ther-band magnitude is 24.57 from the Hyper Suprime-Cam-HETDEX joint survey with a detection limit ofr= 25.12 at 5σ. The Lyαemission line spans a clearly resolved region of ∼10″ (85 kpc) in diameter. The Lyαline profile is strongly double peaked. The spectral decomposed blue gas and red gas Lyαemission are separated by ∼1.″2 (10.1 kpc) with a line-of-sight velocity offset of ∼1100 km s−1. This source is probably an obscured AGN with powerful winds.

     
    more » « less
  9. Abstract

    We present extended Lyαemission out to 800 kpc of 1034 [Oiii]-selected galaxies at redshifts 1.9 <z< 2.35 using the Hobby–Eberly Telescope Dark Energy Experiment. The locations and redshifts of the galaxies are taken from the 3D-HST survey. The median-stacked surface brightness profile of the Lyαemission of the [Oiii]-selected galaxies agrees well with that of 968 bright Lyα-emitting galaxies (LAEs) atr> 40 kpc from the galaxy centers. The surface brightness in the inner parts (r< 10 kpc) around the [Oiii]-selected galaxies, however, is 10 times fainter than that of the LAEs. Our results are consistent with the notion that photons dominating the outer regions of the Lyαhalos are not produced in the central galaxies but originate outside of them.

     
    more » « less
  10. Abstract

    We present the median-stacked Lyman-α (Lyα) surface brightness profiles of 968 spectroscopically selected Lyαemitting galaxies (LAEs) at redshifts 1.9 <z< 3.5 in the early data of the Hobby-Eberly Telescope Dark Energy Experiment. The selected LAEs are high-confidence Lyαdetections with high signal-to-noise ratios observed with good seeing conditions (point-spread function FWHM <1.″4), excluding active galactic nuclei. The Lyαluminosities of the LAEs are 1042.4–1043erg s−1. We detect faint emission in the median-stacked radial profiles at the level of(3.6±1.3)×1020ergs1cm2arcsec2from the surrounding Lyαhalos out tor≃ 160 kpc (physical). The shape of the median-stacked radial profile is consistent atr< 80 kpc with that of much fainter LAEs at 3 <z< 4 observed with the Multi Unit Spectroscopic Explorer (MUSE), indicating that the median-stacked Lyαprofiles have similar shapes at redshifts 2 <z< 4 and across a factor of 10 in Lyαluminosity. While we agree with the results from the MUSE sample atr< 80 kpc, we extend the profile over a factor of two in radius. Atr> 80 kpc, our profile is flatter than the MUSE model. The measured profile agrees at most radii with that of galaxies in the Byrohl et al. cosmological radiative transfer simulation atz= 3. This suggests that the surface brightness of a Lyαhalo atr≲ 100 kpc is dominated by resonant scattering of Lyαphotons from star-forming regions in the central galaxy, whereas atr> 100 kpc, it is dominated by photons from galaxies in surrounding dark matter halos.

     
    more » « less