skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Guangran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    High‐entropy ceramics have been widely explored and extensively studied since the first demonstration of the configuration entropy stabilized reversible transitions between multiple and single phases by Rost et al. in 2015. Most of the current research on high‐entropy ceramics has focused on properties like thermal conductivity, thermoelectricity, structures, and others. Some recent studies have extended the high‐entropy concept to the field of transparent ceramics. We reviewed these papers and proposed four potential ceramics groups for high‐entropy transparent ceramics including fluoride ceramics, fluorite‐deficient and/or ordered pyrochlore A2B2O7ceramics, garnet ceramics, and sesquioxide ceramics. In this article, we review ceramic powder synthesis, the fabrication of transparent ceramics, high‐entropy ceramics, and limited cases of high‐entropy transparent ceramics for each category. High‐entropy transparent ceramics with diverse compositions and structures will provide more possibilities for functional transparent ceramics in the future.

     
    more » « less
  2. Abstract

    Mixtures of Ce‐doped rare‐earth aluminum perovskites are drawing a significant amount of attention as potential scintillating devices. However, the synthesis of complex perovskite systems leads to many challenges. Designing the A‐site cations with an equiatomic ratio allows for the stabilization of a single‐crystal phase driven by an entropic regime. This work describes the synthesis of a highly epitaxial thin film of configurationally disordered rare‐earth aluminum perovskite oxide (La0.2Lu0.2Y0.2Gd0.2Ce0.2)AlO3and characterizes the structural and optical properties. The thin films exhibit three equivalent epitaxial domains having an orthorhombic structure resulting from monoclinic distortion of the perovskite cubic cell. An excitation of 286.5 nm from Gd3+and energy transfer to Ce3+with 405 nm emission are observed, which represents the potential for high‐energy conversion. These experimental results also offer the pathway to tunable optical properties of high‐entropy rare‐earth epitaxial perovskite films for a range of applications.

     
    more » « less
  3. Abstract

    Transparent 1% Gd‐doped YAG and YAG ceramics were synthesized via solid‐state reaction spark plasma sintering using commercially available powder and TESO as a sintering additive. The highest in‐line transmission values achieved were 77.1% at 550 nm and 80.6% at 800 nm in the 1% (at.%) Gd‐doped YAG transparent ceramic with 99.90% relative density. Ultraviolet emission at 312.5 nm was observed in 1% Gd‐doped YAG ceramic via photoluminescence excitation, making it a promising material for applications in solid‐state UV devices.

     
    more » « less