skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Q. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ferroelectric materials are currently some of the most widely applied material systems and are constantly generating improved functions with higher efficiencies. Advancements in poly(vinylidene fluoride) (PVDF)–based polymer ferroelectrics provide flexural, coupling-efficient, and multifunctional material platforms for applications that demand portable, lightweight, wearable, and durable features. We highlight the recent advances in fluoropolymer ferroelectrics, their energetic cross-coupling effects, and emerging technologies, including wearable, highly efficient electromechanical actuators and sensors, electrocaloric refrigeration, and dielectric devices. These developments reveal that the molecular and nanostructure manipulations of the polarization-field interactions, through facile defect biasing, could introduce enhancements in the physical effects that would enable the realization of multisensory and multifunctional wearables for the emerging immersive virtual world and smart systems for a sustainable future.

     
    more » « less
    Free, publicly-accessible full text available May 12, 2024
  2. An improved polymer has properties that make it competitive with commercially available ceramic piezoelectrics. 
    more » « less
  3. Abstract

    Energy harvesting from human motion is regarded as a promising protocol for powering portable electronics, biomedical devices, and smart objects of the Internet of things. However, state‐of‐the‐art mechanical‐energy‐harvesting devices generally operate at frequencies (>10 Hz) well beyond human activity frequencies. Here, a hydrogel ionic diode formed by the layered structures of anionic and cationic ionomers in hydrogels is presented. As confirmed by finite element analysis, the underlying mechanism of the hydrogel ionic diode involves the formation of the depletion region by mobile cations and anions and the subsequent increase of the built‐in potential across the depletion region in response to mechanical pressure. Owing to the enhanced ionic rectification ratio by the embedded carbon nanotube and silver nanowire electrodes, the hydrogel ionic diode exhibits a power density of5 mW cm−2and a charge density of4 mC cm−2at 0.01 Hz, outperforming the current energy‐harvesting devices by several orders of magnitude. The applications of the self‐powered hydrogel ionic diode to tactile sensing, pressure imaging, and touchpads are demonstrated, with sensing limitation is as low as 0.01 kPa. This work is expected to open up new opportunities for ionic‐current‐based ionotronics in electronics and energy devices.

     
    more » « less
  4. Abstract The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era. The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment, in combination with the fission rates of fissile isotopes in the reactor, is used to extract the positron energy spectra resulting from the fission of specific isotopes. This information can be used to produce a precise, data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay. The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method. Consistent results are obtained with other unfolding methods. A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated. Given the reactor fission fractions, the technique can predict the energy spectrum to a 2% precision. In addition, we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method. 
    more » « less