skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Xiaoyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although pulmonary arterial hypertension (PAH) leads to right ventricle (RV) hypertrophy and structural remodeling, the relative contributions of changes in myocardial geometric and mechanical properties to systolic and diastolic chamber dysfunction and their time courses remain unknown. Using measurements of RV hemodynamic and morphological changes over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we discriminated the contributions of RV geometric remodeling and alterations of myocardial material properties to changes in systolic and diastolic chamber function. Significant and rapid RV hypertrophic wall thickening was sufficient to stabilize ejection fraction in response to increased pulmonary arterial pressure by week 4 without significant changes in systolic myofilament activation. After week 4, RV end-diastolic pressure increased significantly with no corresponding changes in end-diastolic volume. Significant RV diastolic chamber stiffening by week 5 was not explained by RV hypertrophy. Instead, model analysis showed that the increases in RV end-diastolic chamber stiffness were entirely attributable to increased resting myocardial material stiffness that was not associated with significant myocardial fibrosis or changes in myocardial collagen content or type. These findings suggest that whereas systolic volume in this model of RV pressure overload is stabilized by early RV hypertrophy, diastolic dilation is prevented by subsequent resting myocardial stiffening. NEW & NOTEWORTHY Using a novel combination of hemodynamic and morphological measurements over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we found that compensated systolic function was almost entirely explained by RV hypertrophy, but subsequently altered RV end-diastolic mechanics were primarily explained by passive myocardial stiffening that was not associated with significant collagen extracellular matrix accumulation. 
    more » « less
  2. Abstract

    The majority of harmful atmospheric CO and NOxemissions are from vehicle exhausts. Although there has been success addressing NOxemissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOxemissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra‐framework positions of the small‐pore chabazite material as a CO and passive NOxadsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition‐metal/SSZ‐13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtIIand PdII. Through spectroscopy and materials testing we show that both CO and NOxcan be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl‐nitrosyl palladium complex in chabazite micropore.

     
    more » « less
  3. Abstract

    The majority of harmful atmospheric CO and NOxemissions are from vehicle exhausts. Although there has been success addressing NOxemissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOxemissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra‐framework positions of the small‐pore chabazite material as a CO and passive NOxadsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition‐metal/SSZ‐13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtIIand PdII. Through spectroscopy and materials testing we show that both CO and NOxcan be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl‐nitrosyl palladium complex in chabazite micropore.

     
    more » « less