skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Leadership is evolving dynamically from an individual endeavor to shared efforts. This paper aims to advance our understanding of shared leadership in scientific teams. We define three kinds of leaders, junior (10–15), mid (15–20), and senior (20+) based on career age. By considering the combinations of any two leaders, we distinguish shared leadership as “heterogeneous” when leaders are in different age cohorts and “homogeneous” when leaders are in the same age cohort. Drawing on 1,845,351 CS, 254,039 Sociology, and 193,338 Business teams with two leaders in the OpenAlex dataset, we identify that heterogeneous shared leadership brings higher citation impact for teams than homogeneous shared leadership. Specifically, when junior leaders are paired with senior leaders, it significantly increases team citation ranking by 1–2 %, in comparison with two leaders of similar age. We explore the patterns between homogeneous leaders and heterogeneous leaders from team scale, expertise composition, and knowledge recency perspectives. Compared with homogeneous leaders, heterogeneous leaders are more impactful in large teams, have more diverse expertise, and trace both the newest and oldest references. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. The COVID-19 pandemic has changed the lives of many people around the world. Based on the available data and published reports, most people diagnosed with COVID-19 exhibit no or mild symptoms and could be discharged home for self-isolation. Considering that a substantial portion of them will progress to a severe disease requiring hospitalization and medical management, including respiratory and circulatory support in the form of supplemental oxygen therapy, mechanical ventilation, vasopressors, etc. The continuous monitoring of patient conditions at home for patients with COVID-19 will allow early determination of disease severity and medical intervention to reduce morbidity and mortality. In addition, this will allow early and safe hospital discharge and free hospital beds for patients who are in need of admission. In this review, we focus on the recent developments in next-generation wearable sensors capable of continuous monitoring of disease symptoms, particularly those associated with COVID-19. These include wearable non/minimally invasive biophysical (temperature, respiratory rate, oxygen saturation, heart rate, and heart rate variability) and biochemical (cytokines, cortisol, and electrolytes) sensors, sensor data analytics, and machine learning-enabled early detection and medical intervention techniques. Together, we aim to inspire the future development of wearable sensors integrated with data analytics, which serve as a foundation for disease diagnostics, health monitoring and predictions, and medical interventions. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Rapid and ultrasensitive point-of-care RNA detection plays a critical role in the diagnosis and management of various infectious diseases. The gold-standard detection method of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is ultrasensitive and accurate yet limited by the lengthy turnaround time (1-2 days). On the other hand, antigen test offers rapid at-home detection (15-20 min) but suffers from low sensitivity and high false-negative rates. An ideal point-of-care diagnostic device would combine the merits of PCR-level sensitivity and rapid sample-to-result workflow comparable to antigen testing. However, the existing RNA detection platform typically possesses superior sensitivity or rapid sample-to-result time, but not both. This paper reports a point-of-care microfluidic device that offers ultrasensitive yet rapid detection of viral RNA from clinical samples. The device consists of a microfluidic chip for precisely manipulating small volumes of samples, a miniaturized heater for viral lysis and ribonuclease (RNase) inactivation, a CRISPR Cas13a- electrochemical sensor for target preamplification-free and ultrasensitive RNA detection, and a smartphone-compatible potentiostat for data acquisition. As demonstrations, the devices achieve the detection of heat-inactivated SARS-CoV-2 samples with a limit of detection (LOD) down to 10 aM within 25 minutes, which is comparable to the sensitivity of RT-PCR and rapidness of antigen test. The platform also successfully distinguishes all nine positive unprocessed clinical SARS-CoV-2 nasopharyngeal swab samples from four negative samples within 25 minutes of sample-to-result time. Together, this device provides a point-of-care solution that can be deployed in diverse settings beyond laboratory environments for rapid and accurate detection of RNA from clinical samples. The device can potentially be expandable to detect other viral targets, such as human immunodeficiency virus (HIV) self-testing and Zika virus, where rapid and ultrasensitive point-of-care detection is required. 
    more » « less
    Free, publicly-accessible full text available July 26, 2024
  7. Covid-19 has been an unprecedented challenge that disruptively reshaped societies and brought a massive amount of novel knowledge to the scientific community. However, as this knowledge flood has surged, researchers have been disadvantaged by not having access to a platform that can quickly synthesize rapidly emerging information and link the expertise it contains to established knowledge foundations. Aiming to fill this gap, in this paper we propose a research framework that can assist scientists in identifying, retrieving, and understanding Covid-19 knowledge from the ocean of scholarly articles. Incorporating Principal Component Decomposition (PDC), a knowledge model based on text analytics, and hierarchical topic tree analysis, the proposed framework profiles the research landscape, retrieves topic-specific knowledge and visualizes knowledge structures. Addressing 127,971 Covid-19 research papers from PubMed, our PCD topic analysis identifies 35 research hotspots, along with their correlations and trends. The hierarchical topic tree analysis further segments the knowledge landscape of the whole dataset into clinical and public health branches at a macro level. To supplement this analysis, we also built a knowledge model from research papers on vaccinations and fetched 92,286 pre-Covid publications as the established knowledge foundation for reference. The hierarchical topic tree analysis results on the retrieved papers show multiple relevant biomedical disciplines and four future research topics: monoclonal antibody treatments, vaccinations in diabetic patients, vaccine immunity effectiveness and durability, and vaccination-related allergic sensitization. 
    more » « less
    Free, publicly-accessible full text available May 31, 2024
  8. Free, publicly-accessible full text available May 1, 2024
  9. With the ever-increasing need for higher data rates, datacom and telecom industries are now migrating to silicon photonics to achieve higher data rates with reduced manufacturing costs. However, the optical packaging of integrated photonic devices with multiple I/O ports remains a slow and expensive process. We introduce an optical packaging technique to attach fiber arrays to a photonic chip in a single shot using CO2laser fusion splicing. We show a minimum coupling loss of 1.1 dB, 1.5 dB, and 1.4 dB per-facet for 2, 4, and 8-fiber arrays (respectively) fused to the oxide mode converters using a single shot from the CO2laser.

     
    more » « less