skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Yujie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The purpose of this tutorial paper is to present a broad overview of photon-pair generation through the spontaneous four wave mixing (SFWM) process in optical fibers. Progress in optical fiber technology means that today we have at our disposal a wide variety of types of fiber, which, together with the fact that SFWM uses two pump fields, implies a truly remarkable versatility in the resulting possible photon-pair properties. We discuss how the interplay of frequency, transverse mode, and polarization degrees of freedom—the first linked to the latter two through fiber dispersion—leads to interesting entanglement properties both in individual degrees of freedom and also permitting hybrid and hyper entanglement in combinations of degrees of freedom. This tutorial covers methods for photon-pair factorability, frequency tunability, and SFWM bandwidth control, the effect of frequency non-degenerate and counterpropagating pumps, as well as methods for characterizing photon pairs generated in optical fibers. 
    more » « less
  2. We present FusionFS, a direct-access firmware-level in-storage filesystem that exploits the near-storage computational capability for fast I/O and data processing, consequently reducing I/O bottlenecks. In FusionFS, we introduce a new abstraction, CISCOps, that combines multiple I/O and data processing operations into one fused operation and offloaded for near-storage processing. By offloading, CISCOps significantly reduces dominant I/O overheads such as system calls, data movement, communication, and other software overheads. Further, to enhance the use of CISCOps, we introduce MicroTx for fine-grained crash consistency and fast (automatic) recovery of I/O and data processing operations. We also explore scheduling techniques to ensure fair and efficient use of in-storage compute and memory resources across tenants. Evaluation of FusionFS against the state-of-the-art user-level, kernel-level, and firmware-level file systems using microbenchmarks, macrobenchmarks, and real-world applications shows up to 6.12X, 5.09X and 2.07X performance gains, and 2.65X faster recovery for applications. 
    more » « less
  3. Shahriar, Selim M. ; Scheuer, Jacob (Ed.)
  4. We connect the reference frame problem in astronomical interferometry to the concept of decoherence-free subspaces in quantum information. Inspired by this connection, a new scheme that does not rely on reference frame is proposed.

     
    more » « less
  5. This paper presents regression and classification methods to estimate wind direction in a wind farm from operational data. Two neural network models are trained using supervised learning. The data are generated using high-fidelity large eddy simulations (LES) of a virtual wind farm with 16 turbines, which are representative of the data available in actual SCADA systems. The simulations include the high-fidelity flow physics and turbine dynamics. The LES data used for training and testing the neural network models are the rotor angular speeds of each turbine. Our neural network models use sixteen angular speeds as inputs to produce an estimate of the wind direction at each point in time. Training and testing of the neural network models are done for seven discrete wind directions, which span the most interesting cases due to symmetry of the wind farm layout. The results of this paper are indicative of the potential that existing neural network models have to obtain estimates of wind direction in real time. 
    more » « less
  6. Abstract

    Quantum channels that break CHSH nonlocality on all input states are known as CHSH-breaking channels. In quantum networks, such channels are useless for distributing correlations that can violate the CHSH Inequality. Motivated by previous work on activation of nonlocality in quantum states, here we demonstrate an analogous activation of CHSH-breaking channels. That is, we show that certain pairs of CHSH-breaking channels are no longer CHSH-breaking when used in combination. We find that this type of activation can emerge in both uni-directional and bi-directional communication scenarios.

     
    more » « less