skip to main content


Search for: All records

Creators/Authors contains: "Zhao, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In January 2021, Metis/SolO and PSP formed a quadrature from which the slow solar wind was able to be measured from the extended solar corona (3.5 – 6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). Metis/SolO remotely measured the coronal solar wind, finding a speed of 96 – 201 kms −1 , and PSP measured the solar wind in situ, finding a speed of 219.34 kms −1 . Similarly, the normalized cross-helicity and the normalized residual energy measured by PSP are 0.96 and -0.07. In this manuscript, we study the evolution of the proton entropy and the turbulence cascade rate of the outward Elsässer energy during this quadrature. We also study the relationship between solar wind speed, density and temperature, and their relationship with the turbulence energy, the turbulence cascade rate, and the solar wind proton entropy. We compare the theoretical results with the observed results measured by Metis/SolO and PSP. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Abstract Interplanetary shock waves are observed frequently in turbulent solar wind. They naturally enhance the temperature/entropy of the plasma through which they propagate. Moreover, many studies have shown that they also act as an amplifier of the fluctuations incident on the shock front. Solar wind turbulent fluctuations can be well described as the superposition of quasi-2D and slab components, the former being energetically dominant. In this paper, we address the interaction of fast forward shocks observed by the Wind spacecraft at 1 AU and quasi-2D turbulent fluctuations in the framework of the Zank et al. (2021) transmission model and we compare model predictions with observations. Our statistical study includes 378 shocks with varying upstream conditions and Mach numbers. We estimate the average ratio of the downstream observed and theoretically predicted power spectra within the inertial range of turbulence. We find that the distributions of this ratio for the whole set and for the subset of shocks that met the assumptions of the model, are remarkably close. We argue that a large statistical spread of the distributions of this ratio is governed by the inherent variation of the upstream conditions. Our findings suggest that the model predicts the downstream fluctuations with a good accuracy and that it may be adopted for a wider class of shocks than it was originally meant for. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    Small-amplitude fluctuations in the magnetized solar wind are measured typically by a single spacecraft. In the magnetohydrodynamics (MHD) description, fluctuations are typically expressed in terms of the fundamental modes admitted by the system. An important question is how to resolve an observed set of fluctuations, typically plasma moments such as the density, velocity, pressure, and magnetic field fluctuations, into their constituent fundamental MHD modal components. Despite its importance in understanding the basic elements of waves and turbulence in the solar wind, this problem has not yet been fully resolved. Here, we introduce a new method that identifies between wave modes and advected structures such as magnetic islands or entropy modes and computes the phase information associated with the eligible MHD modes. The mode-decomposition method developed here identifies the admissible modes in an MHD plasma from a set of plasma and magnetic field fluctuations measured by a single spacecraft at a specific frequency and an inferred wavenumberkm. We present data from three typical intervals measured by the Wind and Solar Orbiter spacecraft at ∼1 au and show how the new method identifies both propagating (wave) and nonpropagating (structures) modes, including entropy and magnetic island modes. This allows us to identify and characterize the separate MHD modes in an observed plasma parcel and to derive wavenumber spectra of entropic density, fast and slow magnetosonic, Alfvénic, and magnetic island fluctuations for the first time. These results help identify the fundamental building blocks of turbulence in the magnetized solar wind.

     
    more » « less
  4. Abstract

    Pickup ions (PUIs) play a crucial role in the heliosphere, contributing to the mediation of large-scale structures such as the distant solar wind, the heliospheric termination shock, and the heliopause. While magnetic reconnection is thought to be a common process in the heliosphere due to the presence of heliospheric current sheets, it is poorly understood how PUIs might affect the evolution of magnetic reconnection. Although it is reasonable to suppose that PUIs decrease the reconnection rate since the plasma beta becomes much larger than 1 when PUIs are included, we show for the first time that such a supposition is invalid and that PUI-induced turbulence, heat conduction, and viscosity can preferentially boost magnetic reconnection in heliospheric current sheets in the distant solar wind. This suggests that it is critical to include the effect of the turbulence, heat conduction, and viscosity caused by PUIs to understand the dynamics of magnetic reconnection in the outer heliosphere.

     
    more » « less
  5. Abstract Connecting the solar wind observed throughout the heliosphere to its origins in the solar corona is one of the central aims of heliophysics. The variability in the magnetic field, bulk plasma, and heavy ion composition properties of the slow wind are thought to result from magnetic reconnection processes in the solar corona. We identify regions of enhanced variability and composition in the solar wind from 2003 April 15 to May 13 (Carrington Rotation 2002), observed by the Wind and Advanced Composition Explorer spacecraft, and demonstrate their relationship to the separatrix–web (hereafter, S-Web) structures describing the corona’s large-scale magnetic topology. There are four pseudostreamer (PS) wind intervals and two helmet streamer (HS) heliospheric current sheet/plasma sheet crossings (and an interplanetary coronal mass ejection), which all exhibit enhanced alpha-to-proton ratios and/or elevated ionic charge states of carbon, oxygen, and iron. We apply the magnetic helicity–partial variance of increments ( H m –PVI) procedure to identify coherent magnetic structures and quantify their properties during each interval. The mean duration of these structures are ∼1 hr in both the HS and PS wind. We find a modest enhancement above the power-law fit to the PVI waiting-time distribution in the HS-associated wind at the 1.5–2 hr timescales that is absent from the PS intervals. We discuss our results in the context of previous observations of the ∼90 minutes periodic density structures in the slow solar wind, further development of the dynamic S-Web model, and future Parker Solar Probe and Solar Orbiter joint observational campaigns. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  6. Abstract A well-known shortcoming of single-spacecraft spectral analysis is that only the 1D wavenumber spectrum can be observed, assuming the characteristic wave propagation speed is much smaller than the solar wind flow speed. This limitation has motivated an extended debate about whether fluctuations observed in the solar wind are waves or structures. Multispacecraft analysis techniques can be used to calculate the wavevector independent of the observed frequency, thus allowing one to study the frequency–wavenumber spectrum of turbulence directly. The dispersion relation for waves can be identified, which distinguishes them from nonpropagating structures. We use magnetic field data from the four Magnetospheric Multiscale (MMS) spacecraft to measure the frequency–wavenumber spectrum of solar wind turbulence based on the k -filtering and phase differencing techniques. Both techniques have been used successfully in the past for the Earth’s magnetosphere, although applications to solar wind turbulence have been limited. We conclude that the solar wind turbulence intervals observed by MMS show features of nonpropagating structures that are associated with frequencies close to zero in the plasma rest frame. However, there is no clear evidence of propagating Alfvén waves that have a nonzero rest-frame frequency. The lack of waves may be due to instrument noise and spacecraft separation. Our results support the idea of turbulence dominated by quasi-2D structures. 
    more » « less
  7. Abstract We present a theoretical and observational study of 2D and slab turbulence cascade (or heating) rates of transverse total turbulence energies, transverse cross helicity, transverse outward and inward Elsässer energy, transverse fluctuating magnetic energy density, and transverse fluctuating kinetic energy from the perihelion of the first Parker Solar Probe (PSP) orbit at ∼36.6 R ⊙ to Solar Orbiter (SolO) at ∼177 R ⊙ . We use the Adhikari et al. (2021a) approach to calculate the observed transverse turbulence heating rate, and the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport theory to calculate the theoretical turbulence cascade rate. We find from the 1 day long PSP measurements at 66.5 R ⊙ , and the SolO measurements at 176.3 R ⊙ that various transverse turbulent cascade rates increase with increasing angle, from 10° to 98°, between the mean solar wind speed and mean magnetic field ( θ UB ), indicating that the 2D heating rate is largest in the inner heliosphere. Similarly, we find from the theoretical and observed results that the 2D heating rate is larger than the slab heating rate as a function of heliocentric distance. We present a comparison between the theoretical and observed 2D and slab turbulence cascade rates as a function of heliocentric distance. 
    more » « less
  8. Abstract We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s −1 , and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s −1 . We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4 R ⊙ and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP. 
    more » « less