skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Lei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Warming alters ecosystems through direct physiological effects on organisms and indirect effects via biotic interactions, but their relative impacts in the wild are unknown due to the difficulty in warming natural environments. Here we bridge this gap by embedding manipulative field experiments within a natural stream temperature gradient to test whether warming and apex fish predators have interactive effects on freshwater ecosystems. Fish exerted cascading effects on algal production and microbial decomposition via both green and brown pathways in the food web, but only under warming. Neither temperature nor the presence of fish altered food web structure alone, but connectance and mean trophic level declined as consumer species were lost when both drivers acted together. A mechanistic model indicates that this temperature-induced trophic cascade is determined primarily by altered interactions, which cautions against extrapolating the impacts of warming from reductionist approaches that do not consider the wider food web.

     
    more » « less
  2. Free, publicly-accessible full text available April 1, 2024
  3. Abstract

    Many urban climates are characterized by increased temperature and decreased relative humidity, under climate change and compared to surrounding rural landscapes. The two trends have contrasting effects on human-perceived heat stress. However, their combined impact on urban humid heat and adaptation has remained largely unclear. Here, we use simulations from an earth system model to investigate how urbanization coupled with climate change affects urban humid heat stress, exposure, and adaptation. Our results show that urban humid heat will increase substantially across the globe by 3.1 °C by the end of the century under a high emission scenario. This projected trend is largely attributed to climate change-driven increases in specific humidity (1.8 °C), followed by air temperature (1.4 °C)—with urbanization impacts varying by location and of a smaller magnitude. Urban humid heat stress is projected to be concentrated in coastal, equatorial areas. At least 44% of the projected urban population in 2100, the equivalent of over 3 billion people worldwide, is projected to be living in an urban area with high humid heat stress. We show a critical, climate-driven dilemma between cooling efficacy and water limitation of urban greenery-based heat adaptation. Insights from our study emphasize the importance of using urban-explicit humid heat measures for more accurate assessments of urban heat exposure and invite careful evaluation of the feasibility of green infrastructure as a long-term cooling strategy.

     
    more » « less
  4. Most metals adopt simple structures such as body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) structures in specific groupings across the periodic table, and many undergo transitions to surprisingly complex structures on compression, not expected from conventional free-electron-based theories of metals. First-principles calculations have been able to reproduce many observed structures and transitions, but a unified, predictive theory that underlies this behavior is not yet in hand. Discovered by analyzing the electronic properties of metals in various lattices over a broad range of sizes and geometries, a remarkably simple theory shows that the stability of metal structures is governed by electrons occupying local interstitial orbitals and their strong chemical interactions. The theory provides a basis for understanding and predicting structures in solid compounds and alloys over a broad range of conditions. 
    more » « less
  5. Abstract Understanding the relationship between biodiversity and ecosystem stability is a central goal of ecologists. Recent studies have concluded that biodiversity increases community temporal stability by increasing the asynchrony between the dynamics of different species. Theoretically, this enhancement can occur through either increased between-species compensatory dynamics, a fundamentally biological mechanism; or through an averaging effect, primarily a statistical mechanism. Yet it remains unclear which mechanism is dominant in explaining the diversity-stability relationship. We address this issue by mathematically decomposing asynchrony into components separately quantifying the compensatory and statistical-averaging effects. We applied the new decomposition approach to plant survey and experimental data from North American grasslands. We show that statistical averaging, rather than compensatory dynamics, was the principal mediator of biodiversity effects on community stability. Our simple decomposition approach helps integrate concepts of stability, asynchrony, statistical averaging, and compensatory dynamics, and suggests that statistical averaging, rather than compensatory dynamics, is the primary means by which biodiversity confers ecological stability. 
    more » « less
  6. All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N 2 gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N 2 crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N 16 molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N 16 crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N 2 from the N 5 group as revealed by the MD simulations. 
    more » « less