skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Xiao-Yun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite its electron deficiency, boron can form multiple bonds with a variety of elements. However, multiple bonds between boron and main-group metal elements are relatively rare. Here we report the observation of boron-lead multiple bonds in PbB2Oand PbB3O2, which are produced and characterized in a cluster beam. PbB2Ois found to have an open-shell linear structure, in which the bond order of B☱Pb is 2.5, while the closed-shell [Pb≡B–B≡O]2–contains a B≡Pb triple bond. PbB3O2is shown to have a Y-shaped structure with a terminal B = Pb double bond coordinated by two boronyl ligands. Comparison between [Pb≡B–B≡O]2–/[Pb=B(B≡O)2]and the isoelectronic [Pb≡B–C≡O]/[Pb=B(C≡O)2]+carbonyl counterparts further reveals transition-metal-like behaviors for the central B atoms. Additional theoretical studies show that Ge and Sn can form similar boron species as Pb, suggesting the possibilities to synthesize new compounds containing multiple boron bonds with heavy group-14 elements.

     
    more » « less
  2. Chirality plays an important role in nature. Nanoclusters can also exhibit chiral properties. We report herein a joint experimental and theoretical investigation on the geometric and electronic structures of B 31 − and B 32 − clusters, using photoelectron spectroscopy in combination with first-principles calculations. Two degenerate quasi-planar chiral C 1 enantiomers ( I and II , 1 A) with a central hexagonal vacancy are identified as the global minima of B 31 − . For B 32 − , two degenerate boat-like quasi-planar chiral C 2 structures ( VI and VII , 2 A) with a central hexagonal vacancy are also found as the global minima, with a low-lying chair-like C i B 32 − ( VIII , 2 A u ) also present in the experiment as a minor isomer. The chiral conversions in quasi-planar B 31 − and B 32 − clusters are investigated and relatively low barriers are found due to the high flexibility of these monolayer clusters, which feature multiple delocalized σ and π bonds over buckled molecular surfaces. 
    more » « less
  3. Since the discovery of the B 40 borospherene, research interests have been directed to the structural evolution of even larger boron clusters. An interesting question concerns if the borospherene cages persist in larger boron clusters like the fullerenes. Here we report a photoelectron spectroscopy (PES) and computational study on the structures and bonding of B 41 − and B 42 − , the largest boron clusters characterized experimentally thus far. The PE spectra of both clusters display broad and complicated features, suggesting the existence of multiple low-lying isomers. Global minimum searches for B 41 − reveal three low-lying isomers ( I–III ), which are all related to the planar B 40 − structure. Isomer II ( C s , 1 A′) possessing a double hexagonal vacancy is found to agree well with the experiment, while isomers I ( C s , 3 A′′) and III ( C s , 1 A′) both with a single hexagonal vacancy are also present as minor isomers in the experiment. The potential landscape of B 42 − is found to be much more complicated with numerous low-lying isomers ( VII–XII ). The quasi-planar structure VIII ( C 1 , 2 A) containing a double hexagonal vacancy is found to make major contributions to the observed PE spectrum of B 42 − , while the other low-lying isomers may also be present to give rise to a complicated spectral pattern. Chemical bonding analyses show isomer II of B 41 − ( C s , 1 A′) and isomer VIII of B 42 − ( C 1 , 2 A) are π aromatic, analogous to that in the polycyclic aromatic hydrocarbon C 27 H 13 + ( C 2v , 1 A 1 ). Borospherene cage isomers are also found for both B 41 − and B 42 − in the global minimum searches, but they are much higher energy isomers. 
    more » « less