skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Yun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate a novel approach to actively and continuously tune the coupling condition of microresonators. Our approach allows for wavelength-dependent coupling and dispersion modification after fabrication.

     
    more » « less
  2. Using silicon-nitride microresonators with integrated Moiré-Bragg gratings to suppress parasitic nonlinear processes, we demonstrate on-chip frequency conversion to a single idler tone with a record-high 71% efficiency using Bragg scattering four-wave-mixing.

     
    more » « less
  3. The development of low-cost, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is of great significance for many promising energy storage and conversion applications, including metal–air batteries and water splitting technology. Here we report a layer-structured Ca 0.5 CoO 2 nanofibers composed of interconnected ultrathin nanoplates, synthesized using an electrospinning process. The OER activity of Ca 0.5 CoO 2 can be dramatically improved by iron doping, and the overpotential of Ca 0.5 Co 1− x Fe x O 2 ( x = 0.25) is only 346 mV at a current density of 10 mA cm −2 . The mass activity and intrinsic activity of Ca 0.5 Co 0.75 Fe 0.25 O 2 at 1.6 V are, respectively, ∼18.7 and ∼11.4 times higher than those of Ca 0.5 CoO 2 . Iron doping modifies the electronic structure of Ca 0.5 CoO 2 , resulting in partial oxidation of the surface cobalt and increased amount of highly oxidative species (O 2 2− /O 2 ). Consequently, Ca 0.5 Co 0.75 Fe 0.25 O 2 nanofibers with tuned electronic states have shown great potential as cost-effective and efficient electrocatalysts for OER. 
    more » « less
  4. Microresonator-based platforms withnonlinearities have the potential to perform frequency conversion at high efficiencies and ultralow powers with small footprints. The standard doctrine for achieving high conversion efficiency in cavity-based devices requires “perfect matching,” that is, zero phase mismatch while all relevant frequencies are precisely at a cavity resonance, which is difficult to achieve in integrated platforms due to fabrication errors and limited tunabilities. In this Letter, we show that the violation of perfect matching does not necessitate a reduction in conversion efficiency. On the contrary, in many cases, mismatches should be intentionally introduced to improve the efficiency or tunability of conversion. We identify the universal conditions for maximizing the efficiency of cavity-based frequency conversion and show a straightforward approach to fully compensate for parasitic processes such as thermorefractive and photorefractive effects that, typically, can limit the conversion efficiency. We also show the design criteria that make these high-efficiency states stable against nonlinearity-induced instabilities.

     
    more » « less
  5. In a passive cavity geometry, there exists a trade-off between resonant enhancement and response time, which is inherently limited by the cavity photon lifetime. We demonstrate frequency-selective, dynamic control of the photon lifetime using a silicon-nitride coupled-ring resonator. The photon lifetime is tuned by controlling an avoided mode crossing using thermo-optic tuning of the cavity resonance with integrated heaters. Using this effect, we achieve fast turn-on/off of aχ<#comment/>(3)degenerate optical parametric oscillator (DOPO) and on-chip true random number generation. Our approach allows us to overcome theQ-limited generation rate of a single-ring-based DOPO and offers a path toward the development of a scalable integrated high-quality entropy source for modern cryptographic systems.

     
    more » « less
  6. We present an approach for generating widely separated first sidebands based solely on the four-wave-mixing process in optical parametric oscillators built on complementary metal–oxide–semiconductor-compatible photonic chips. Using higher-order transverse modes to perform dispersion engineering, we obtain zero-group-velocity dispersion near 796 nm. By pumping the chip in the normal dispersion region, at 795.6 nm, we generate a signal field in the visible band (at 546.2 nm) and the corresponding idler field in the telecom band (at 1465.3 nm), corresponding to a frequency span of approximately 346 THz. We show that the spectral position of signal and idler can be tailored by exploiting a delicate balance between second- and fourth-order dispersion terms. Furthermore, we explicitly demonstrate a change in the parametric oscillation dynamics when moving the pump field from the anomalous to normal dispersion, where the chip ceases producing multiple sidebands adjacent to the pump field and generates widely separated single sidebands. This provides a chip-scale platform for generating single-sideband fields separated by more than one octave, covering the visible and telecom spectral regions.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    Low-temperature direct ammonia fuel cells (DAFCs) use carbon-neutral ammonia as a fuel, which has attracted increasing attention recently due to ammonia's low source-to-tank energy cost, easy transport and storage, and wide availability. However, current DAFC technologies are greatly limited by the kinetically sluggish ammonia oxidation reaction (AOR) at the anode. Herein, we report an AOR catalyst, in which ternary PtIrZn nanoparticles with an average size of 2.3 ± 0.2 nm were highly dispersed on a binary composite support comprising cerium oxide (CeO 2 ) and zeolitic imidazolate framework-8 (ZIF-8)-derived carbon (PtIrZn/CeO 2 -ZIF-8) through a sonochemical-assisted synthesis method. The PtIrZn alloy, with the aid of abundant OH ad provided by CeO 2 and uniform particle dispersibility contributed by porous ZIF-8 carbon (surface area: ∼600 m 2 g −1 ), has shown highly efficient catalytic activity for the AOR in alkaline media, superior to that of commercial PtIr/C. The rotating disk electrode (RDE) results indicate a lower onset potential (0.35 vs. 0.43 V), relative to the reversible hydrogen electrode at room temperature, and a decreased activation energy (∼36.7 vs. 50.8 kJ mol −1 ) relative to the PtIr/C catalyst. Notably, the PtIrZn/CeO 2 -ZIF-8 catalyst was assembled with a high-performance hydroxide anion-exchange membrane to fabricate an alkaline DAFC, reaching a peak power density of 91 mW cm −2 . Unlike in aqueous electrolytes, supports play a critical role in improving uniform ionomer distribution and mass transport in the anode. PtIrZn nanoparticles on silicon dioxide (SiO 2 ) integrated with carboxyl-functionalized carbon nanotubes (CNT–COOH) were further studied as the anode in a DAFC. A significantly enhanced peak power density of 314 mW cm −2 was achieved. Density functional theory calculations elucidated that Zn atoms in the PtIr alloy can reduce the theoretical limiting potential of *NH 2 dehydrogenation to *NH by ∼0.1 V, which can be attributed to a Zn-modulated upshift of the Pt–Ir d-band that facilitates the N–H bond breakage. 
    more » « less
  9. null (Ed.)
    We demonstrate reconfigurable all-optical coupling between two degenerate optical parametric oscillators in silicon-nitride microresonators. We show in-phase and out-of-phase operation which is achieved at a fast regeneration rate of 400 kHz with a large phase tolerance. 
    more » « less