skip to main content


Search for: All records

Creators/Authors contains: "Zhiltsov, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A bstract Jet production in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector at the LHC, using PbPb and pp data samples corresponding to integrated luminosities of 404 μ b − 1 and 27.4 pb − 1 , respectively. Jets with different areas are reconstructed using the anti- k T algorithm by varying the distance parameter R . The measurements are performed using jets with transverse momenta ( p T ) greater than 200 GeV and in a pseudorapidity range of |η| < 2. To reveal the medium modification of the jet spectra in PbPb collisions, the properly normalized ratio of spectra from PbPb and pp data is used to extract jet nuclear modification factors as functions of the PbPb collision centrality, p T and, for the first time, as a function of R up to 1.0. For the most central collisions, a strong suppression is observed for high- p T jets reconstructed with all distance parameters, implying that a significant amount of jet energy is scattered to large angles. The dependence of jet suppression on R is expected to be sensitive to both the jet energy loss mechanism and the medium response, and so the data are compared to several modern event generators and analytic calculations. The models considered do not fully reproduce the data. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    A bstract A search for a light pseudoscalar Higgs boson (a) decaying from the 125 GeV (or a heavier) scalar Higgs boson (H) is performed using the 2016 LHC proton-proton collision data at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 35 . 9 fb − 1 , collected by the CMS experiment. The analysis considers gluon fusion and vector boson fusion production of the H, followed by the decay H → aa → μμττ , and considers pseudoscalar masses in the range 3 . 6 < m a < 21 GeV. Because of the large mass difference between the H and the a bosons and the small masses of the a boson decay products, both the μμ and the ττ pairs have high Lorentz boost and are collimated. The ττ reconstruction efficiency is increased by modifying the standard technique for hadronic τ lepton decay reconstruction to account for a nearby muon. No significant signal is observed. Model-independent limits are set at 95% confidence level, as a function of m a , on the branching fraction (ℬ) for H → aa → μμττ , down to 1 . 5 (2 . 0) × 10 − 4 for m H = 125 (300) GeV. Model-dependent limits on ℬ(H → aa) are set within the context of two Higgs doublets plus singlet models, with the most stringent results obtained for Type-III models. These results extend current LHC searches for heavier a bosons that decay to resolved lepton pairs and provide the first such bounds for an H boson with a mass above 125 GeV. 
    more » « less
  5. null (Ed.)
  6. Abstract The mass of the top quark is measured using a sample of $${{\text {t}}\overline{{\text {t}}}}$$ t t ¯ events collected by the CMS detector using proton-proton collisions at $$\sqrt{s}=13$$ s = 13 $$\,\text {TeV}$$ TeV at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 $$\,\text {fb}^{-1}$$ fb - 1 . For each event the mass is reconstructed from a kinematic fit of the decay products to a $${{\text {t}}\overline{{\text {t}}}}$$ t t ¯ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in $${\text {q}} \overline{{\text {q}}} ^\prime $$ q q ¯ ′ decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be $$172.25 \pm 0.08\,\text {(stat+JSF)} \pm 0.62\,\text {(syst)} \,\text {GeV} $$ 172.25 ± 0.08 (stat+JSF) ± 0.62 (syst) GeV . The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of $${{\text {t}}\overline{{\text {t}}}}$$ t t ¯ production, and no indications of a bias in the measurements are observed. 
    more » « less