skip to main content


Search for: All records

Creators/Authors contains: "Zhou, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. The ladle furnace plays a critical role in the secondary steelmaking stage, where many processes take place in the ladle such as steel property and temperature homogenization, inclusion removal, degassing, and desulfurization. Although many research has been conducted to study these aspects, due to the complicated heat and mass transfer process inside the ladle, many details about the physical process are still not quite clear. For example, the efficacy of plug/injector designs in turbulent mixing of molten steel were not fully understood. Due to its complex three dimensional flow phenomena inside the ladle, previous two dimensional flow measurement of water ladle models provided little insight into understanding the three dimensional flow phenomenon of turbulent mixing. Therefore, to achieve a better understanding on the efficacy of plug/injector designs in turbulent mixing, we implemented an advanced volumetric flow measurement instrument of Shake-the-Box system to measure the three-dimensional flow field inside a water ladle model. Totally, three different plug/injector designs were tested under two different flow rates (8 LPM and 11.5 LPM) of gas injection within a volumetric flow measurement region of 4.8 cm × 4.8 cm × 2.4 cm. The flow measurement results suggest the double slits injector produces the highest turbulence kinetic energy comparing the three injectors. 
    more » « less
  3. ABSTRACT The detection of the 11.3$\, {\rm \mu m}$ emission feature characteristic of the Si–C stretch in carbon-rich evolved stars reveals that silicon carbide (SiC) dust grains are condensed in the outflows of carbon stars. SiC dust could be a significant constituent of interstellar dust since it is generally believed that carbon stars inject a considerable amount of dust into the interstellar medium (ISM). The presence of SiC dust in the ISM is also supported by the identification of pre-solar SiC grains of stellar origin in primitive meteorites. However, the 11.3$\,\mu {\rm m}$ absorption feature of SiC has never been seen in the ISM, and oxidative destruction of SiC is often invoked. In this work, we quantitatively explore the destruction of interstellar SiC dust through oxidation based on molecular dynamics simulations and density functional theory calculations. We find that the reaction of an oxygen atom with SiC molecules and clusters is exothermic and could cause CO-loss. Nevertheless, even if this is extrapolable to bulk SiC dust, the destruction rate of SiC dust through oxidation could still be considerably smaller than the (currently believed) injection rate from carbon stars. Therefore, the lack of the 11.3$\,\mu{\rm m}$ absorption feature of SiC dust in the ISM remains a mystery. A possible solution may lie in the currently believed stellar injection rate of SiC (which may have been overestimated) and/or the size of SiC dust (which may actually be considerably smaller than submicron in size). 
    more » « less
  4. Langran, L. ; Henriksen, D. (Ed.)
    This study introduces an Augmented-Reality-based learning system that aims to support young students’ embodied learning in block-based programming activities where they learn computational concepts and create meaningful chunks of codes. Students are going to perform episode-embedded path-finding tasks, which are designed to practice their capacities of applying computational thinking in a reasonable manner to solve problems within different scenarios. Grounded on an embodied cognition approach, the AR integration creates a concrete and tangible environment for young students to understand abstract conceptual knowledge in an engaging and interactive way, with a close connection built between the real and virtual worlds. 
    more » « less
  5. ABSTRACT

    Clusters of galaxies trace the most non-linear peaks in the cosmic density field. The weak gravitational lensing of background galaxies by clusters can allow us to infer their masses. However, galaxies associated with the local environment of the cluster can also be intrinsically aligned due to the local tidal gradient, contaminating any cosmology derived from the lensing signal. We measure this intrinsic alignment in Dark Energy Survey (DES) Year 1 redMaPPer clusters. We find evidence of a non-zero mean radial alignment of galaxies within clusters between redshifts 0.1–0.7. We find a significant systematic in the measured ellipticities of cluster satellite galaxies that we attribute to the central galaxy flux and other intracluster light. We attempt to correct this signal, and fit a simple model for intrinsic alignment amplitude (AIA) to the measurement, finding AIA = 0.15 ± 0.04, when excluding data near the edge of the cluster. We find a significantly stronger alignment of the central galaxy with the cluster dark matter halo at low redshift and with higher richness and central galaxy absolute magnitude (proxies for cluster mass). This is an important demonstration of the ability of large photometric data sets like DES to provide direct constraints on the intrinsic alignment of galaxies within clusters. These measurements can inform improvements to small-scale modelling and simulation of the intrinsic alignment of galaxies to help improve the separation of the intrinsic alignment signal in weak lensing studies.

     
    more » « less
  6. null (Ed.)
  7. In this article the recent developments of the open-source OpenMolcas chemistry software environment, since spring 2020, are described, with the main focus on novel functionalities that are accessible in the stable branch of the package and/or via interfaces with other packages. These community developments span a wide range of topics in computational chemistry, and are presented in thematic sections associated with electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report represents a useful summary of these developments, and it offers a solid overview of the chemical phenomena and processes that OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024