skip to main content


Search for: All records

Creators/Authors contains: "de Looze, Ilse"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The recent survey of the core-collapse supernova remnant Cassiopeia A (Cas A) with the MIRI instrument on board the James Webb Space Telescope (JWST) revealed a large structure in the interior region, referred to as the “Green Monster.” Although its location suggests that it is an ejecta structure, the infrared properties of the “Green Monster” hint at a circumstellar medium (CSM) origin. In this companion paper to the JWST Cas A paper, we investigate the filamentary X-ray structures associated with the “Green Monster” using Chandra X-ray Observatory data. We extracted spectra along the “Green Monster” as well as from shocked CSM regions. Both the extracted spectra and a principal component analysis show that the “Green Monster” emission properties are similar to those of the shocked CSM. The spectra are well fit by a model consisting of a combination of a nonequilibrium ionization model and a power-law component, modified by Galactic absorption. All the “Green Monster” spectra show a blueshift corresponding to a radial velocity of around −2300 km s−1, suggesting that the structure is on the near side of Cas A. The ionization age is aroundnet≈ 1.5 × 1011cm−3s. This translates into a preshock density of ∼12 cm−3, higher than previous estimates of the unshocked CSM. The relatively highnetand relatively low radial velocity suggest that this structure has a relatively high density compared to other shocked CSM plasma. This analysis provides yet another piece of evidence that the CSM around Cas A’s progenitor was not that of a smooth steady wind profile.

     
    more » « less
  2. ABSTRACT

    Star formation histories (SFHs) are integral to our understanding of galaxy evolution. We can study recent SFHs by comparing the star formation rate (SFR) calculated using different tracers, as each probes a different time-scale. We aim to calibrate a proxy for the present-day rate of change in SFR, dSFR/dt, which does not require full spectral energy distribution (SED) modelling and depends on as few observables as possible, to guarantee its broad applicability. To achieve this, we create a set of models in cigale and define an SFR change diagnostic as the ratio of the SFR averaged over the past 5 and 200 Myr, $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$, probed by the H α–FUV colour. We apply $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$ to the nearby spiral NGC 628 and find that its star formation activity has overall been declining in the recent past, with the spiral arms, however, maintaining a higher level of activity. The impact of the spiral arm structure is observed to be stronger on $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$ than on the star formation efficiency. In addition, increasing disc pressure tends to increase recent star formation, and consequently $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$. We conclude that $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$ is sensitive to the molecular gas content, spiral arm structure, and disc pressure. The $\langle SFR_{\rm {5}} \rangle \big / \langle SFR_{\rm {200}} \rangle$ indicator is general and can be used to reconstruct the recent SFH of any star-forming galaxy for which H α, FUV, and either mid- or far-IR photometry is available, without the need of detailed modelling.

     
    more » « less
  3. Abstract

    JWST Near Infrared Camera (NIRCam) observations at 1.5–4.5μm have provided broadband and narrowband imaging of the evolving remnant of SN 1987A with unparalleled sensitivity and spatial resolution. Comparing with previous marginally spatially resolved Spitzer Infrared Array Camera (IRAC) observations from 2004 to 2019 confirms that the emission arises from the circumstellar equatorial ring (ER), and the current brightness at 3.6 and 4.5μm was accurately predicted by extrapolation of the declining brightness tracked by IRAC. Despite the regular light curve, the NIRCam observations clearly reveal that much of this emission is from a newly developing outer portion of the ER. Spots in the outer ER tend to lie at position angles in between the well-known ER hotspots. We show that the bulk of the emission in the field can be represented by five standard spectral energy distributions, each with a distinct origin and spatial distribution. This spectral decomposition provides a powerful technique for distinguishing overlapping emission from the circumstellar medium and the supernova ejecta, excited by the forward and reverse shocks, respectively.

     
    more » « less
  4. ABSTRACT

    Cosmic dust is an essential component shaping both the evolution of galaxies and their observational signatures. How quickly dust builds up in the early Universe remains an open question that requires deep observations at (sub-)millimetre wavelengths to resolve. Here, we use Atacama Large Millimeter Array observations of 45 galaxies from the Reionization Era Bright Emission Line Survey (REBELS) and its pilot programs, designed to target [C ii] and dust emission in UV-selected galaxies at z ∼ 7, to investigate the dust content of high-redshift galaxies through a stacking analysis. We find that the typical fraction of obscured star formation fobs = SFRIR/SFRUV+IR depends on stellar mass, similar to what is observed at lower redshift, and ranges from fobs ≈ 0.3 − 0.6 for galaxies with log10(M⋆/M⊙) = 9.4–10.4. We further adopt the z ∼ 7 stellar mass function from the literature to extract the obscured cosmic star formation rate density (SFRD) from the REBELS survey. Our results suggest only a modest decrease in the SFRD between 3 ≲ z ≲ 7, with dust-obscured star formation still contributing ${\sim}30{{\ \rm per\ cent}}$ at z ∼ 7. While we extensively discuss potential caveats, our analysis highlights the continued importance of dust-obscured star formation even well into the epoch of reionization.

     
    more » « less
  5. ABSTRACT

    We present specific star formation rates (sSFRs) for 40 ultraviolet (UV)-bright galaxies at z ∼ 7–8 observed as part of the Reionization Era Bright Emission Line Survey (REBELS) Atacama Large Millimeter/submillimeter Array (ALMA) large programme. The sSFRs are derived using improved star formation rate (SFR) calibrations and spectral energy distribution (SED)-based stellar masses, made possible by measurements of far-infrared (FIR) continuum emission and [C ii]-based spectroscopic redshifts. The median sSFR of the sample is $18_{-5}^{+7}$ Gyr−1, significantly larger than literature measurements lacking constraints in the FIR, reflecting the larger obscured SFRs derived from the dust continuum relative to that implied by the UV+optical SED. We suggest that such differences may reflect spatial variations in dust across these luminous galaxies, with the component dominating the FIR distinct from that dominating the UV. We demonstrate that the inferred stellar masses (and hence sSFRs) are strongly dependent on the assumed star formation history in reionization-era galaxies. When large sSFR galaxies (a population that is common at z > 6) are modelled with non-parametric star formation histories, the derived stellar masses can increase by an order of magnitude relative to constant star formation models, owing to the presence of a significant old stellar population that is outshined by the recent burst. The [C ii] line widths in the largest sSFR systems are often very broad, suggesting dynamical masses capable of accommodating an old stellar population suggested by non-parametric models. Regardless of these systematic uncertainties among derived parameters, we find that sSFRs increase rapidly toward higher redshifts for massive galaxies (9.6 < log (M*/M⊙) < 9.8), evolving as (1 + z)1.7 ± 0.3, broadly consistent with expectations from the evolving baryon accretion rates.

     
    more » « less
  6. Abstract We have obtained sensitive dust continuum polarization observations at 850 μ m in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B -fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field ( B -field) at high spatial resolution (∼2000 au or ∼0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis–Chandrasekhar–Fermi method, we estimate the B -field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 μ G, respectively. These cores show distinct mean B -field orientations. The B -field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B -field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B -field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B -field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B -field that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B -field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B -field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux. 
    more » « less