skip to main content


Search for: All records

Creators/Authors contains: "van Anders, Greg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Orientational ordering is a necessary step in the crystallization of molecules and anisotropic colloids. Plastic crystals, which are possible mesophases between the fluid and fully ordered crystal, are translationally ordered but exhibit no long range orientational order. Here, we study the two-dimensional phase behavior of hard regular polygons with edge number n = 3–12. This family of particles provides a model system to isolate the effect of shape and symmetry on the existence of plastic crystal phases. We show that the symmetry group of the particle, G , and the symmetry group of the local environment in the crystal, H , together determine plastic colloidal crystal phase behavior in two dimensions. If G contains completely the symmetry elements of H , then a plastic crystal phase is absent. If G and H share some but not all nontrivial symmetry elements, then a plastic crystal phase exists with preferred particle orientations that recover the absent symmetry elements of the crystal; we call this phase the discrete plastic crystal phase. If G and H share no nontrivial symmetry elements, then a plastic crystal phase exists without preferred orientations, which we call an indiscrete plastic crystal. 
    more » « less
  3. null (Ed.)
  4. We investigate a class of “shape allophiles” that fit together like puzzle pieces as a method to access and stabilize desired structures by controlling directional entropic forces. Squares are cut into rectangular halves, which are shaped in an allophilic manner with the goal of re-assembling the squares while self-assembling the square lattice. We examine the assembly characteristics of this system via the potential of mean force and torque, and the fraction of particles that entropically bind. We generalize our findings and apply them to self-assemble triangles into a square lattice via allophilic shaping. Through these studies we show how shape allophiles can be useful for assembling and stabilizing desired phases with appropriate allophilic design. 
    more » « less