skip to main content


Search for: All records

Creators/Authors contains: "van��den��Bosch, Frank C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We analyse the internal structure and dynamics of cosmic-web filaments connecting massive high-z haloes. Our analysis is based on a high-resolution arepo cosmological simulation zooming-in on three Mpc-scale filaments feeding three massive haloes of $\sim 10^{12}\, \text{M}_\odot$ at z ∼ 4, embedded in a large-scale sheet. Each filament is surrounded by a cylindrical accretion shock of radius $r_{\rm shock} \sim 50 \, {\rm kpc}$. The post-shock gas is in virial equilibrium within the potential well set by an isothermal dark-matter filament. The filament line-mass is $\sim 9\times 10^8\, \text{M}_\odot \, {\rm kpc}^{-1}$, the gas fraction within rshock is the universal baryon fraction, and the virial temperature is ∼7 × 105 K. These all match expectations from analytical models for filament properties as a function of halo mass and redshift. The filament cross-section has three radial zones. In the outer ‘thermal’ (T) zone, $r \ge 0.65 \, r_{\rm shock}$, inward gravity, and ram-pressure forces are overbalanced by outward thermal pressure forces, decelerating the inflowing gas and expanding the shock outwards. In the intermediate ‘vortex’ (V) zone, 0.25 ≤ r/rshock ≤ 0.65, the velocity field is dominated by a quadrupolar vortex structure due to offset inflow along the sheet through the post-shock gas. The outward force is dominated by centrifugal forces associated with these vortices, with additional contributions from global rotation and thermal pressure. Shear and turbulent forces associated with the vortices act inwards. The inner ‘stream’ (S) zone, $r \lt 0.25 \, r_{\rm shock}$, is a dense isothermal core, $T\sim 3 \times 10^4 \, {\rm K}$ and $n_{\rm H}\sim 0.01 \, {\rm cm^{-3}}$, defining the cold streams that feed galaxies. The core is formed by an isobaric cooling flow and is associated with a decrease in outward forces, though exhibiting both inflows and outflows.

     
    more » « less
  2. Abstract

    We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a nonresponsive dark matter (DM) halo to various perturbations like bars, spiral arms, and encounters with satellite galaxies. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Ωz), radial (Ωr), and azimuthal (Ωϕ) frequencies, triggering local phase-space spirals. The detailed galactic potential dictates the shape of phase spirals: phase mixing occurs more slowly and thus phase spirals are more loosely wound in the outer disk and in the presence of an ambient DM halo. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes superexponential damping of the phase spiral amplitude. Thezvzphase spiral is one-armed (two-armed) for vertically antisymmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (τP) comparable to the vertical oscillation period (τz∼ 1/Ωz) can trigger vertical phase spirals. Each (n,l,m) mode of the response to impulsive (τP<τ= 1/(nΩz+lΩr+mΩϕ)) perturbations is power-law (∼τP/τ) suppressed, but that to adiabatic (τP>τ) perturbations is exponentially weak (expτP/τα) except for resonant (τ→ ∞ ) modes. Slower (τP>τz) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. Sagittarius (Sgr) dominates the solar neighborhood response of the Milky Way (MW) disk to satellite encounters. Thus, if the Gaia phase spiral was triggered by a MW satellite, Sgr is the leading contender. However, the survival of the phase spiral against collisional damping necessitates an impact ∼0.6–0.7 Gyr ago.

     
    more » « less
  3. Abstract

    Dwarf galaxies are thought to quench primarily due to environmental processes most typically occurring in galaxy groups and clusters or around single, massive galaxies. However, at earlier epochs, (5 < z < 2), the collapse of large-scale structure (forming Zel’dovich sheets and subsequently filaments of the cosmic web) can produce volume-filling accretion shocks which elevate large swaths of the intergalactic medium (IGM) in these structures to a hot (T > 106 K) phase. We study the impact of such an event on the evolution of central dwarf galaxies (5.5 < log M* < 8.5) in the field using a spatially large, high resolution cosmological zoom simulation which covers the cosmic web environment between two protoclusters. We find that the shock-heated sheet acts as an environmental quencher much like clusters and filaments at lower redshift, creating a population of quenched, central dwarf galaxies. Even massive dwarfs that do not quench are affected by the shock, with reductions to their sSFR and gas accretion. This process can potentially explain the presence of isolated quenched dwarf galaxies, and represents an avenue of pre-processing, via which quenched satellites of bound systems quench before infall.

     
    more » « less
  4. ABSTRACT

    We present a novel simulation-based cosmological analysis of galaxy–galaxy lensing and galaxy redshift-space clustering. Compared to analysis methods based on perturbation theory, our simulation-based approach allows us to probe a much wider range of scales, $0.4 \, h^{-1} \, \mathrm{Mpc}$ to $63 \, h^{-1} \, \mathrm{Mpc}$, including highly non-linear scales, and marginalizes over astrophysical effects such as assembly bias. We apply this framework to data from the Baryon Oscillation Spectroscopic Survey LOWZ sample cross-correlated with state-of-the-art gravitational lensing catalogues from the Kilo Degree Survey and the Dark Energy Survey. We show that gravitational lensing and redshift-space clustering when analysed over a large range of scales place tight constraints on the growth-of-structure parameter $S_8 = \sigma _8 \sqrt{\Omega _{\rm m} / 0.3}$. Overall, we infer S8 = 0.792 ± 0.022 when analysing the combination of galaxy–galaxy lensing and projected galaxy clustering and S8 = 0.771 ± 0.027 for galaxy redshift-space clustering. These findings highlight the potential constraining power of full-scale studies over studies analysing only large scales and also showcase the benefits of analysing multiple large-scale structure surveys jointly. Our inferred values for S8 fall below the value inferred from the CMB, S8 = 0.834 ± 0.016. While this difference is not statistically significant by itself, our results mirror other findings in the literature whereby low-redshift large-scale structure probes infer lower values for S8 than the CMB, the so-called S8-tension.

     
    more » « less
  5. Abstract

    Galactic disks are highly responsive systems that often undergo external perturbations and subsequent collisionless equilibration, predominantly via phase mixing. We use linear perturbation theory to study the response of infinite isothermal slab analogs of disks to perturbations with diverse spatiotemporal characteristics. Without self-gravity of the response, the dominant Fourier modes that get excited in a disk are the bending and breathing modes, which, due to vertical phase mixing, trigger local phase-space spirals that are one- and two-armed, respectively. We demonstrate how the lateral streaming motion of slab stars causes phase spirals to damp out over time. The ratio of the perturbation timescale (τP) to the local, vertical oscillation time (τz) ultimately decides which of the two modes is excited. Faster, more impulsive (τP<τz) and slower, more adiabatic (τP>τz) perturbations excite stronger breathing and bending modes, respectively, although the response to very slow perturbations is exponentially suppressed. For encounters with satellite galaxies, this translates to more distant and more perpendicular encounters triggering stronger bending modes. We compute the direct response of the Milky Way disk to several of its satellite galaxies and find that recent encounters with all of them excite bending modes in the solar neighborhood. The encounter with Sagittarius triggers a response that is at least 1–2 orders of magnitude larger than that due to any other satellite, including the Large Magellanic Cloud. We briefly discuss how ignoring the presence of a dark matter halo and the self-gravity of the response might impact our conclusions.

     
    more » « less
  6. Abstract

    We examine the origin of dynamical friction using a nonperturbative, orbit-based approach. Unlike the standard perturbative approach, in which dynamical friction arises from the LBK torque due to pure resonances, this alternative, complementary view nicely illustrates how a massive perturber significantly changes the energies and angular momenta of field particles on near-resonant orbits, with friction arising from an imbalance between particles that gain energy and those that lose energy. We treat dynamical friction in a spherical host system as a restricted three-body problem. This treatment is applicable in the “slow” regime, in which the perturber sinks slowly and the standard perturbative framework fails due to the onset of nonlinearities. Hence, it is especially suited to investigate the origin of core-stalling: the cessation of dynamical friction in central constant-density cores. We identify three different families of near-corotation-resonant orbits that dominate the contribution to dynamical friction. Their relative contribution is governed by the Lagrange points (fixed points in the corotating frame). In particular, one of the three families, which we call Pac-Man orbits because of their appearance in the corotating frame, is unique to cored density distributions. When the perturber reaches a central core, a bifurcation of the Lagrange points drastically changes the orbital makeup, with Pac-Man orbits becoming dominant. In addition, due to relatively small gradients in the distribution function inside a core, the net torque from these Pac-Man orbits becomes positive (enhancing), thereby effectuating a dynamical buoyancy. We argue that core-stalling occurs where this buoyancy is balanced by friction.

     
    more » « less
  7. ABSTRACT

    We present observational constraints on the galaxy–halo connection, focusing particularly on galaxy assembly bias from a novel combination of counts-in-cylinders statistics, P(NCIC), with the standard measurements of the projected two-point correlation function wp(rp), and number density ngal of galaxies. We measure ngal, wp(rp), and P(NCIC) for volume-limited, luminosity-threshold samples of galaxies selected from SDSS DR7, and use them to constrain halo occupation distribution (HOD) models, including a model in which galaxy occupation depends upon a secondary halo property, namely halo concentration. We detect significant positive central assembly bias for the Mr < −20.0 and Mr < −19.5 samples. Central galaxies preferentially reside within haloes of high concentration at fixed mass. Positive central assembly bias is also favoured in the Mr < −20.5 and Mr < −19.0 samples. We find no evidence of central assembly bias in the Mr < −21.0 sample. We observe only a marginal preference for negative satellite assembly bias in the Mr < −20.0 and Mr < −19.0 samples, and non-zero satellite assembly bias is not indicated in other samples. Our findings underscore the necessity of accounting for galaxy assembly bias when interpreting galaxy survey data, and demonstrate the potential of count statistics in extracting information from the spatial distribution of galaxies, which could be applied to both galaxy–halo connection studies and cosmological analyses.

     
    more » « less
  8. ABSTRACT We use a simulation-based modelling approach to analyse the anisotropic clustering of the BOSS LOWZ sample over the radial range $0.4 \, h^{-1} \, \mathrm{Mpc}$ to $63 \, h^{-1} \, \mathrm{Mpc}$, significantly extending what is possible with a purely analytic modelling framework. Our full-scale analysis yields constraints on the growth of structure that are a factor of two more stringent than any other study on large scales at similar redshifts. We infer fσ8 = 0.471 ± 0.024 at $z$ ≈ 0.25, and fσ8 = 0.430 ± 0.025 at $z$ ≈ 0.40; the corresponding ΛCDM predictions of the Planck cosmic microwave background (CMB) analysis are 0.470 ± 0.006 and 0.476 ± 0.005, respectively. Our results are thus consistent with Planck, but also follow the trend seen in previous low-redshift measurements of fσ8 falling slightly below the ΛCDM + CMB prediction. We find that small- and large-radial scales yield mutually consistent values of fσ8, but there are 1−2.5σ hints of small scales ($\lt 10 \, h^{-1} \, \mathrm{Mpc}$) preferring lower values for fσ8 relative to larger scales. We analyse the constraining power of the full range of radial scales, finding that most of the multipole information about fσ8 is contained in the scales $2 \, h^{-1} \, \mathrm{Mpc}\lesssim s \lesssim 20 \, h^{-1} \, \mathrm{Mpc}$. Evidently, once the cosmological information of the quasi-to-nonlinear regime has been harvested, large-scale modes contain only modest additional information about structure growth. Finally, we compare predictions for the galaxy–galaxy lensing amplitude of the two samples against measurements from SDSS and assess the lensing-is-low effect in light of our findings. 
    more » « less