skip to main content

Search for: All records

Award ID contains: 1059097

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Addition of sub‐stoichiometric quantities of PEt3and diphenyl disulfide to a solution of [Ni(1,5‐cod)2] generates a mixture of [Ni3(SPh)4(PEt3)3] (1), unreacted [Ni(1,5‐cod)2], and [(1,5‐cod)Ni(PEt3)2], according to1H and31P{1H} NMR spectroscopic monitoring of the in situ reaction mixture. On standing, complex1converts into [Ni4(S)(Ph)(SPh)3(PEt3)3] (2), via formal addition of a “Ni(0)” equivalent, coupled with a CS oxidative addition step, which simultaneously generates the Ni‐bound phenyl ligand and the μ3‐sulfide ligand. Upon gentle heating, complex2converts into a mixture of [Ni5(S)2(SPh)2(PEt3)5] (3) and [Ni8(S)5(PEt3)7] (4), via further addition of “Ni(0)” equivalents, in combination with a series of C–S oxidative addition and CC reductive elimination steps, which serve to convert thiophenolate ligands into sulfide ligands and biphenyl. The presence of14in the reaction mixture is confirmed by their independent syntheses and subsequent spectroscopic characterization. Overall, this work provides an unprecedented level of detail of the early stages of Ni nanocluster growth and highlights the fundamental reaction steps (i.e., metal atom addition, CS oxidative addition, and CC reductive elimination) that are required to grow an individual cluster.

    more » « less