- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dmitriev, Konstantin (1)
-
Park, Ji Hwan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract—We introduce a transfer-function-guided 3D blockbased saliency-aware compression scheme for volumetric data that is both content- and spatially-scalable. Salient 3D volumetric blocks are identi ed and weighted with the help of a transfer function which is used to render the data. We describe our method in the form of a framework for processing, progressive transmission, and visualization of volumetric data on a target device, such as a mobile device with limited computational resources. In particular, we address the transmission bottleneck incurred when transferring 3D volumetric data. Identi ed salient regions are progressively transmitted to the target device. The received data is rendered progressively in the respective order with a prede ned or user-de ned transfer function. Our method is developed with medical applications in mind, where preservation of all information is essential for clinical diagnosis. Because our method is integrated into a resolution scalable coding scheme with an integer wavelet transform of the image, it allows the rendering of each signi cant region at a different resolution up to fully lossless reconstruction.We perform a thorough qualitative and quantitative evaluation of the saliency detection method and the resulting saliency-aware compression schemes. Our results show reduced error in representation of the volumetric data with our method. Index Terms—Compression, saliency, volume visualization, wavelets, discrete cosine transform.more » « less
-
Dmitriev, Konstantin (, Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017)There are many different types of pancreatic cysts. These range from completely benign to malignant, and identifying the exact cyst type can be challenging in clinical practice. This work describes an automatic classification algorithm that classifies the four most common types of pancreatic cysts using computed tomography images. The proposed approach utilizes the general demographic information about a patient as well as the imaging appearance of the cyst. It is based on a Bayesian combination of the random forest classifier, which learns subclass-specific demographic, intensity, and shape features, and a new convolutional neural network that relies on the fine texture information. Quantitative assessment of the proposed method was performed using a 10-fold cross validation on 134 patients and reported a classification accuracy of 83.6%.more » « less
An official website of the United States government

Full Text Available