skip to main content


Search for: All records

Award ID contains: 1101245

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To paraphrase former Speaker of the House Tip O'Neill, “All climate change is local”—that is, society reacts most immediately to changes in local weather such as regional heat waves and heavy rainstorms. Such phenomena are not well resolved by the current generation of coupled climate models. Here it is shown that dynamical downscaling of climate reanalyses using a high‐resolution regional model can reproduce both the means and extremes of temperature and precipitation as observed in the well‐measured northeastern United States. Given this result, the downscaling is applied to climate projections for the middle and end of the 21st century under Representative Concentration Pathway (RCP) 8.5 as well as for the historical time period to help assess regional climate impacts in the northeastern United States. The resulting high‐resolution projections are intended to support regional sustainability studies for the northeastern United States and are made publicly available.

     
    more » « less
  2. Abstract

    Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire,USA, that concurrently monitored climate, snow, soils, and streams over a three‐year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero‐length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter‐to‐spring transition and throughout the rest of the year.

     
    more » « less