skip to main content

Search for: All records

Award ID contains: 1119865

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    To distinguish among hypotheses on the importance of resource‐exchange ratios in outcomes of mutualisms, we measured resource (carbon (C), nitrogen (N), and phosphorus (P)) transfers and their ratios, betweenPinus taedaseedlings and two ectomycorrhizal (EM) fungal species,Rhizopogon roseolusandPisolithus arhizusin a laboratory experiment.

    We evaluated how ambient light affected those resource fluxes and ratios over three time periods (10, 20, and 30 wk) and the consequences for plant and fungal biomass accrual, in environmental chambers.

    Our results suggest that light availability is an important factor driving absolute fluxes of N, P, and C, but not exchange ratios, although its effects vary among EM fungal species. Declines in N : C and P : C exchange ratios over time, as soil nutrient availability likely declined, were consistent with predictions of biological market models. Absolute transfer of P was an important predictor of both plant and fungal biomass, consistent with the excess resource‐exchange hypothesis, and N transfer to plants was positively associated with fungal biomass.

    Altogether, light effects on resource fluxes indicated mixed support for various theoretical frameworks, while results on biomass accrual better supported the excess resource‐exchange hypothesis, although among‐species variability is in need of further characterization.

    more » « less