skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1148800

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Bering‐Bagley Glacier System (BBGS), Alaska, Earth's largest temperate surging glacier, surged in 2008–2013. We use numerical modeling and satellite observations to investigate how surging in a large and complex glacier system differs from surging in smaller glaciers for which our current understanding of the surge phenomenon is based. With numerical simulations of a long quiescent phase and a short surge phase in the BBGS, we show that surging is more spatiotemporally complex in larger glaciers with multiple reservoir areas forming during quiescence which interact in a cascading manner when ice accelerates during the surge phase. For each phase, we analyze the simulated elevation‐change and ice‐velocity pattern, infer information on the evolving basal drainage system through hydropotential analysis, and supplement these findings with observational data such as CryoSat‐2 digital elevation maps. During the quiescent simulation, water drainage paths become increasingly lateral and hydropotential wells form indicating an expanding storage capacity of subglacial water. These results are attributed to local bedrock topography characterized by large subglacial ridges that dam the down‐glacier flow of ice and water. In the surge simulation, we model surge evolution through Bering Glacier's trunk by imposing a basal friction representation that mimics a propagating surge wave. As the surge progresses, drainage efficiency further degrades in the active surging‐zone from its already inefficient, end‐of‐quiescence state. Results from this study improve our knowledge of surging in large and complex systems which generalizes to glacial accelerations observed in outlet glaciers of Greenland, thus reducing uncertainty in modeling sea‐level rise. 
    more » « less
  2. The recent surge of the Bering-Bagley Glacier System (BBGS), Alaska, in 2008-2013 provided a rare opportunity to study surging in a large and complex system. We simulate glacier evolution for a 20 year quiescent phase, where geometrical and hydrological changes lead to conditions favorable for surging, and the first two years of a surge phase where a surge-front propagates through the system activating the surging ice. For each phase, we analyze the simulated elevation-change and ice-velocity pattern, and infer information on the evolving basal drainage system through hydropotential analysis. During the quiescent phase simulation, several reservoir areas form at locations consistent with those observed. Up-glacier of these reservoir areas, water drainage paths become increasingly lateral and hydropotential wells form indicating an expanding storage capacity of subglacial water. These results are attributed to local bedrock topography characterized by large subglacial ridges that act to dam the down-glacier flow of ice and water. Based on the BBGS’s end-of-quiescence state, we propose several surge initiation criteria to predict when the system is set to surge. In the surge simulation, we model surge evolution through Bering Glacier’s trunk by implementing a new friction law that mimics a propagating surge-wave. Modeled surge velocities share spatial patterns and reach similar peaks as those observed in 2008-2010. As the surge progresses through the glacier, drainage efficiency further degrades in the active surging zone from its already inefficient, end-of-quiescence state. Satellite observations from 2013 indicate hydraulic drainage efficiency throughout the glacier was restored after the surge had ended. 
    more » « less