skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1149285

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this article, we introduce a p arallelizing a pproximatio n - d isc o very f ra mework, PANDORA, for automatically discovering application- and architecture-specialized approximations of provided code. PANDORA complements existing compilers and runtime optimizers by generating approximations with a range of Pareto-optimal tradeoffs between performance and error, which enables adaptation to different inputs, different user preferences, and different runtime conditions (e.g., battery life). We demonstrate that PANDORA can create parallel approximations of inherently sequential code by discovering alternative implementations that eliminate loop-carried dependencies. For a variety of functions with loop-carried dependencies, PANDORA generates approximations that achieve speedups ranging from 2.3x to 81x, with acceptable error for many usage scenarios. We also demonstrate PANDORA’s architecture-specialized approximations via FPGA experiments, and highlight PANDORA’s discovery capabilities by removing loop-carried dependencies from a recurrence relation with no known closed-form solution. 
    more » « less