Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper describes the interface and testing of an indoor navigation app - ASSIST - that guides blind & visually impaired (BVI) individuals through an indoor environment with high accuracy while augmenting their understanding of the surrounding environment. ASSIST features personalized inter-faces by considering the unique experiences that BVI individuals have in indoor wayfinding and offers multiple levels of multimodal feedback. After an overview of the technical approach and implementation of the first prototype of the ASSIST system, the results of two pilot studies performed with BVI individuals are presented. Our studies show that ASSIST is useful in providing users with navigational guidance, improving their efficiency and (more significantly) their safety and accuracy in wayfinding indoors.more » « less
-
null (Ed.)This paper describes the interface and testing of an indoor navigation app - ASSIST - that guides blind & visually impaired (BVI) individuals through an indoor environment with high accuracy while augmenting their understanding of the surrounding environment. ASSIST features personalized interfaces by considering the unique experiences that BVI individuals have in indoor wayfinding and offers multiple levels of multimodal feedback. After an overview of the technical approach and implementation of the first prototype of the ASSIST system, the results of two pilot studies performed with BVI individuals are presented – a performance study to collect data on mobility (walking speed, collisions, and navigation errors) while using the app, and a usability study to collect user evaluation data on the perceived helpfulness, safety, ease-of-use, and overall experience while using the app. Our studies show that ASSIST is useful in providing users with navigational guidance, improving their efficiency and (more significantly) their safety and accuracy in wayfinding indoors. Findings and user feed-back from the studies confirm some of the previous results, while also providing some new insights into the creation of such an app, including the use of customized user interfaces and expanding the types of information provided.more » « less
-
Blind & visually impaired (BVI) individuals and those with Autism Spectrum Disorder (ASD) each face unique challenges in navigating unfamiliar indoor environments. In this paper, we propose an indoor positioning and navigation system that guides a user from point A to point B indoors with high accuracy while augmenting their situational awareness. This system has three major components: location recognition (a hybrid indoor localization app that uses Bluetooth Low Energy beacons and Google Tango to provide high accuracy), object recognition (a body-mounted camera to provide the user momentary situational awareness of objects and people), and semantic recognition (map-based annotations to alert the user of static environmental characteristics). This system also features personalized interfaces built upon the unique experiences that both BVI and ASD individuals have in indoor wayfinding and tailors its multimodal feedback to their needs. Here, the technical approach and implementation of this system are discussed, and the results of human subject tests with both BVI and ASD individuals are presented. In addition, we discuss and show the system’s user-centric interface and present points for future work and expansion.more » « less
-
Blind & visually impaired individuals often face challenges in wayfinding in unfamiliar environments. Thus, an accessible indoor positioning and navigation system that safely and accurately positions and guides such individuals would be welcome. In indoor positioning, both Bluetooth Low Energy (BLE) beacons and Google Tango have their individual strengths but also have weaknesses that can affect the overall usability of a system that solely relies on either component. We propose a hybrid positioning and navigation system that combines both BLE beacons and Google Tango in order to tap into their strengths while minimizing their individual weaknesses. In this paper, we will discuss the approach and implementation of a BLE- and Tango-based hybrid system. The results of pilot tests on the individual components and a human subject test on the full BLE and hybrid systems are also presented. In addition, we have explored the use of vibrotactile devices to provide additional information to a user about their surroundings.more » « less
An official website of the United States government

Full Text Available