- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Iyengar, Srikanth B. (4)
-
Avramov, Luchezar L. (2)
-
BENSON, DAVE (1)
-
Benson, Dave (1)
-
Conca, Aldo (1)
-
IYENGAR, SRIKANTH B. (1)
-
KRAUSE, HENNING (1)
-
Krause, Henning (1)
-
Lipman, Joseph (1)
-
Neeman, Amnon (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Local cohomology functors are constructed for the category of cohomological functors on an essentially small triangulated category ⊺ equipped with an action of a commutative noetherian ring. This is used to establish a local-global principle and to develop a notion of stratification, for ⊺ and the cohomological functors on it, analogous to such concepts for compactly generated triangulated categories.more » « less
-
Iyengar, Srikanth B.; Lipman, Joseph; Neeman, Amnon (, Compositio Mathematica)Grothendieck duality theory assigns to essentially finite-type maps $$f$$ of noetherian schemes a pseudofunctor $$f^{\times }$$ right-adjoint to $$\mathsf{R}f_{\ast }$$ , and a pseudofunctor $$f^{!}$$ agreeing with $$f^{\times }$$ when $$f$$ is proper, but equal to the usual inverse image $$f^{\ast }$$ when $$f$$ is étale. We define and study a canonical map from the first pseudofunctor to the second. This map behaves well with respect to flat base change, and is taken to an isomorphism by ‘compactly supported’ versions of standard derived functors. Concrete realizations are described, for instance for maps of affine schemes. Applications include proofs of reduction theorems for Hochschild homology and cohomology, and of a remarkable formula for the fundamental class of a flat map of affine schemes.more » « less
-
Avramov, Luchezar L.; Conca, Aldo; Iyengar, Srikanth B. (, Mathematische Annalen)
-
Benson, Dave; Iyengar, Srikanth B.; Krause, Henning (, Journal of K-theory: K-theory and its Applications to Algebra, Geometry, and Topology)
-
Avramov, Luchezar L.; Iyengar, Srikanth B. (, Journal of Commutative Algebra)
An official website of the United States government
