skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1208998

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Macdonald processes are measures on sequences of integer partitions built using the Cauchy summation identity for Macdonald symmetric functions. These measures are a useful tool to uncover the integrability of many probabilistic systems, including the Kardar–Parisi–Zhang (KPZ) equation and a number of other models in its universality class. In this paper, we develop the structural theory behind half-space variants of these models and the corresponding half-space Macdonald processes. These processes are built using a Littlewood summation identity instead of the Cauchy identity, and their analysis is considerably harder than their full-space counterparts. We compute moments and Laplace transforms of observables for general half-space Macdonald measures. Introducing new dynamics preserving this class of measures, we relate them to various stochastic processes, in particular the log-gamma polymer in a half-quadrant (they are also related to the stochastic six-vertex model in a half-quadrant and the half-space ASEP). For the polymer model, we provide explicit integral formulas for the Laplace transform of the partition function. Nonrigorous saddle-point asymptotics yield convergence of the directed polymer free energy to either the Tracy–Widom (associated to the Gaussian orthogonal or symplectic ensemble) or the Gaussian distribution depending on the average size of weights on the boundary. 
    more » « less