skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1230395

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Relationships between critical supersaturation required for activation and particle dry diameter have been the primary means for experimentally characterizing cloud condensation nuclei (CCN) activity; however, use of the dry diameter inherently limits the application to cases where the dry diameter can be used to accurately estimate solute volume. This study challenges the requirement and proposes a new experimental approach, Wet CCN, for studying CCN activity without the need for a drying step. The new approach directly measures the subsaturated portion of the Köhler curves. The experimental setup consists of a humidity-controlled differential mobility analyzer and a CCN counter; wet diameter equilibrated at known relative humidity is used to characterize CCN activity instead of the dry diameter. The experimental approach was validated against ammonium sulfate, glucose, and nonspherical ammonium oxalate monohydrate. Further, the approach was applied to a mixture of nonspherical iodine oxide particles. The Wet CCN approach successfully determined the hygroscopicity of nonspherical particles by collapsing them into spherical, deliquesced droplets. We further show that the Wet CCN approach offers unique insights into the physical and chemical impacts of the aqueous phase on CCN activity; a potential application is to investigate the impact of evaporation/co-condensation of water-soluble semivolatile species on CCN activity. 
    more » « less