skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1250414

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many intermediate to felsic intrusive and extrusive rocks contain mafic magmatic enclaves that are evidence for magma recharge and mixing. Whether enclaves represent records of prolonged mixing  or syn‐eruptive recharge depends on their preservation potential in their intermediate to felsic host magmas. We present a model for enclave consumption where an initial stage of diffusive equilibration loosens the crystal framework in the enclave followed by advective erosion and disaggregation of the loose crystal layer. Using experimental data to constrain the propagation rate of the loosening front leads to enclave “erosion” rates of 10−5–10−8 cm/s for subvolcanic magma systems. These rates suggest that under some circumstances, enclave records are restricted to syn‐eruptive processes, while in most cases, enclave populations represent the recharge history over centuries to millennia. On these timescales, mafic magmatic enclaves may be unique recorders that can be compared to societal and written records of volcano activity. 
    more » « less