skip to main content


Search for: All records

Award ID contains: 1305836

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many organisms can reproduce both asexually and sexually. For cyclical parthenogens, periods of asexual reproduction are punctuated by bouts of sexual reproduction, and the shift from asexual to sexual reproduction has large impacts on fitness and population dynamics. We studied populations ofDaphnia dentiferato determine the amount of investment in sexual reproduction as well as the factors associated with variation in investment in sex. To do so, we tracked host density, infections by nine different parasites, and sexual reproduction in 15 lake populations ofD. dentiferafor 3 years. Sexual reproduction was seasonal, with male and ephippial female production beginning as early as late September and generally increasing through November. However, there was substantial variation in the prevalence of sexual individuals across populations, with some populations remaining entirely asexual throughout the study period and others shifting almost entirely to sexual females and males. We found strong relationships between density, prevalence of infection, parasite species richness, and sexual reproduction in these populations. However, strong collinearity between density, parasitism, and sexual reproduction means that further work will be required to disentangle the causal mechanisms underlying these relationships.

     
    more » « less
  2. null (Ed.)
    Genetic variation in parasites has important consequences for host-parasite interactions. Prior studies of the ecologically important parasite Metschnikowia bicuspidata have suggested low genetic variation in the species. Here, we collected M. bicuspidata from two host species (Daphnia dentifera and Ceriodaphnia dubia) and two regions (Michigan and Indiana, USA). Within a lake, outbreaks tended to occur in one host species but not the other. Using microsatellite markers, we identified six parasite genotypes grouped within three distinct clades, one of which was rare. Of the two main clades, one was generally associated with D. dentifera, with lakes in both regions containing a single genotype. The other M. bicuspidata clade was mainly associated with C. dubia, with a different genotype dominating in each region. Despite these associations, both D. dentifera- and C. dubia-associated genotypes were found infecting both hosts in lakes. However, in lab experiments, the D. dentifera-associated genotype infected both D. dentifera and C. dubia, but the C. dubia-associated genotype, which had spores that were approximately 30% smaller, did not infect D. dentifera. We hypothesize that variation in spore size might help explain patterns of cross-species transmission. Future studies exploring the causes and consequences of variation in spore size may help explain patterns of infection and the maintenance of genotypic diversity in this ecologically important system. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract Climate change is altering light regimes in lakes, which should impact disease outbreaks, since sunlight can harm aquatic pathogens. However, some bacterial endospores are resistant to damage from light, even surviving exposure to UV-C. We examined the sensitivity of Pasteuria ramosa endospores, an aquatic parasite infecting Daphnia zooplankton, to biologically relevant wavelengths of light. Laboratory exposure to increasing intensities of UV-B, UV-A, and visible light significantly decreased P. ramosa infectivity, though there was no effect of spore exposure on parasitic castration of infected hosts. P. ramosa is more sensitive than its Daphnia host to damage by longer wavelength UV-A and visible light; this may enable Daphnia to seek an optimal light environment in the water column, where both UV-B damage and parasitism are minimal. Studies of pathogen light sensitivity help us to uncover factors controlling epidemics in lakes, which is especially important given that water transparency is decreasing in many lakes. 
    more » « less