skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1307075

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The absence of thermalization in certain isolated many-body systems is of great fundamental interest. Many-body localization (MBL) is a widely studied mechanism for thermalization to fail in strongly disordered quantum systems, but it is still not understood precisely how the range of interactions affects the dynamical behavior and the existence of MBL, especially in dimensionsD > 1. By investigating nonequilibrium dynamics in strongly disorderedD = 2 electron systems with power-law interactions ∝ 1/rαand poor coupling to a thermal bath, here we observe MBL-like, prethermal dynamics forα = 3. In contrast, forα = 1, the system thermalizes, although the dynamics is glassy. Our results provide important insights for theory, especially since we obtained them on systems that are much closer to the thermodynamic limit than synthetic quantum systems employed in previous studies of MBL. Thus, our work is a key step towards further studies of ergodicity breaking and quantum entanglement in real materials. 
    more » « less
  2. null (Ed.)
    We report the fabrication of hexagonal-boron-nitride (hBN) encapsulated multi-terminal WSe_2 Hall bars with 2D/2D low-temperature Ohmic contacts as a platform for investigating the two-dimensional (2D) metal-insulator transition. We demonstrate that the WSe_2 devices exhibit Ohmic behavior down to 0.25 K and at low enough excitation voltages to avoid current-heating effects. Additionally, the high-quality hBN-encapsulated WSe_2 devices in ideal Hall-bar geometry enable us to accurately determine the carrier density. Measurements of the temperature (T) and density (n_s) dependence of the conductivity \sigma(T,n_s) demonstrate scaling behavior consistent with a metal-insulator quantum phase transition driven by electron-electron interactions, but where disorder-induced local magnetic moments are also present. Our findings pave the way for further studies of the fundamental quantum mechanical properties of 2D transition metal dichalcogenides using the same contact engineering. 
    more » « less