Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Modern Haskell supportszero-costcoercions, a mechanism where types that share the same run-time representation may be freely converted between. To make sure such conversions are safe and desirable, this feature relies on a mechanism ofrolesto prohibit invalid coercions. In this work, we show how to incorporate roles into dependent types systems and prove, using the Coq proof assistant, that the resulting system is sound. We have designed this work as a foundation for the addition of dependent types to the Glasgow Haskell Compiler, but we also expect that it will be of use to designers of other dependently-typed languages who might want to adopt Haskell’s safe coercions feature.more » « less
-
We would like to use the Coq proof assistant to mechanically verify properties of Haskell programs. To that end, we present a tool, named hs-to-coq, that translates total Haskell programs into Coq programs via a shallow embedding. We apply our tool in three case studies -- a lawful Monad instance, ``Hutton's razor'', and an existing data structure library -- and prove their correctness. These examples show that this approach is viable: both that hs-to-coq applies to existing Haskell code, and that the output it produces is amenable to verification.more » « less
-
We propose a core semantics for Dependent Haskell, an extension of Haskell with full-spectrum dependent types. Our semantics consists of two related languages. The first is a Curry-style dependently-typed language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired by the Glasgow Haskell Compiler's core language FC, is its explicitly-typed analogue, suitable for implementation in GHC. All of our results---chiefly, type safety, along with theorems that relate these two languages---have been formalized using the Coq proof assistant. Because our work is backwards compatible with Haskell, our type safety proof holds in the presence of nonterminating computation. However, unlike other full-spectrum dependently-typed languages, such as Coq, Agda or Idris, because of this nontermination, Haskell's term language does not correspond to a consistent logic.more » « less
An official website of the United States government
