skip to main content


Search for: All records

Award ID contains: 1321777

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Metamorphic rocks from the Connecticut Valley Trough (CVT), Vermont, and Massachusetts, have been examined using quartz‐in‐garnet (QuiG) and conventional thermobarometry, thermodynamic reaction modelling, diffusion modelling, and40Ar/39Ar thermochronology to constrain theirP–T–tpaths during Acadian metamorphism and subsequent exhumation. Numerous samples, collected in the vicinity of the Acadian domes, contain garnet porphyroblasts that display cloudy zones characterized by numerous fluid inclusions and modified garnet compositions associated with the replacement of the original garnet by biotite±muscovite±plagioclase±quartz±lowXgrs/enrichedXsps. QuiG and conventional thermobarometry constrain both the conditions of garnet nucleation and peakP–Tconditions to have occurred at ~0.85–1.05 GPa, ~550–600°C. Most notably, QuiG barometry was performed on inclusions adjacent to these reaction zones in conjunction with Gibbs method reaction modelling to reveal that these dissolution–reprecipitation reactions occurred during nearly isothermal decompression from the peakP–Tconditions to around ~0.3 GPa, 550°C. Diffusion modelling reveals that the Mn zoning profiles created during garnet resorption that accompanied decompression formed in less thanc. 3 Ma, which constrains the tectonic exhumation to have occurred at 8–10 mm/year. Subsequent cooling to 500°C occurred rapidly at a rate of 100°C/Ma, followed by slower cooling reaching 1.7°C /Ma by the mid Carboniferous. This is the first reported example of QuiG barometry revealing a multi‐stage metamorphic history and highlights the utility of this method for unravelling complex metamorphic terranes.

     
    more » « less
  2. Abstract A comparative analysis of Raman shifts of quartz inclusions in garnet was made along two traverses across the Connecticut Valley Trough (CVT) in western New England, USA, to examine the regional trends of quartz inclusion in garnet (QuiG) Raman barometry pressure results and to compare this method with conventional thermobarometry and the method of intersecting garnet core isopleths. Overall, Raman shifts of quartz inclusions ranged from 1·2 to 3·5 cm–1 over all field areas and displayed a south to north decrease, matching the overall decrease in mapped metamorphic grade. Raman shifts of quartz inclusions typically did not show systematic variation with respect to their radial position within a garnet crystal, and indicate that garnet probably grew at nearly isothermal and isobaric pressure–temperature (P–T) conditions. The P–T conditions inferred from conventional thermobarometry were in the range of ∼500–575 °C and ∼7·4–10·3 kbar over the sample suite and are in good agreement with previous published thermobarometry throughout the CVT. These P–T results are broadly consistent with QuiG barometry and also suggest that garnet grew isothermally and isobarically at near peak P–T conditions. However, P–T conditions and P–T paths inferred using either garnet core thermobarometry or garnet core intersecting isopleths yield results that are internally inconsistent and generally disagree with the pressure results from QuiG barometry. Garnet core isopleth intersections consistently plotted between the nominal garnet-in curve on mineral assemblage diagrams and the P–T conditions constrained by QuiG isomekes for the majority of the sample suite. Additionally, most samples’ P–T results from QuiG barometry and rim thermobarometry show marked disagreement from those derived from garnet core thermobarometry, compared with the minority that showed agreement within uncertainty. Pressures calculated from QuiG barometry ranged from 8·5 to 9·5 kbar along the traverses in western Massachusetts (MA) and central Vermont (VT) and from 6·5 to 7·5 kbar in northern VT indicating an increase in peak burial of 3–6 km from north to south. Along the western end of the central VT traverse, there are differences in measured Raman shifts and inferred peak pressures of up to 1 kbar across the Richardson Memorial Contact (RMC), indicating a possible fault contact with minor post-peak metamorphic shortening of up to ∼3 km. In contrast, along an east–west traverse in the vicinity of the Goshen Dome, MA, there was little observed variation in Raman shifts across the contact. By contrast, QuiG barometry clearly indicates significant discontinuities in peak pressure east of the Strafford Dome in central VT. This supports the interpretation that post-peak metamorphic shortening was necessary to juxtapose upper staurolite–kyanite zone rocks next to lower garnet zone pelites. Overall, it is concluded that garnet core thermobarometry and garnet core isopleths may provide unreliable results for the P–T conditions of garnet nucleation and inferred P–T paths during garnet growth unless independently verified. The consistency of QuiG results with rim thermobarometry indicates that peak metamorphic conditions previously reported for the CVT using garnet rim thermobarometry are robust and that variation in QuiG barometry results is a valuable tool to analyze structural features within a metamorphic terrane. 
    more » « less
  3. null (Ed.)