skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1332862

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent focus has been given to nonlinear periodic structures for their ability to filter, guide, and block elastic and acoustic waves as a function of their amplitude. In particular, two-dimensional (2-D) nonlinear structures possess amplitude-dependent directional bandgaps. However, little attention has been given to the stability of plane waves along different directions in these structures. This study analyzes a 2-D monoatomic shear lattice composed of discrete masses, linear springs, quadratic and cubic nonlinear springs, and linear viscous dampers. A local stability analysis informed by perturbation results retained through the second order suggests that different directions become unstable at different amplitudes in an otherwise symmetrical lattice. Simulations of the lattice’s equation of motion subjected to both line and point forcing are consistent with the local stability results: waves with large amplitudes have spectral growth that differs appreciably at different angles. The results of this analysis could have implications for encryption strategies and damage detection. 
    more » « less