skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1361571

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ferroelectric films suffer from both aging and degradation under high ac‐field drive conditions due to loss of polarization with time. In this study, the roles of defect chemistry and internal electric fields on the long‐term stability of the properties of piezoelectric films were explored. For this purpose, lead zirconate titanate (PZT) films with a Zr/Ti ratio of 52/48 doped with Mn‐ (PMZT) or Nb‐ (PNZT) were deposited on Pt coated Si substrates by the sol‐gel method. It was demonstrated that the magnitude of the internal field is much higher in PMZT films compared to PNZT films after poling in the temperature range of 25‐200°C under an electric field of −240 kV/cm. The development of the internal field is thermally activated, with activation energies from 0.5 ± 0.06 to 0.8 ± 0.1 eV in Mn doped films and from 0.8 ± 0.1 to 1.2 ± 0.2 eV in Nb doped films. The different activation energies for imprint suggests that the physical mechanism underlying the evolution of the internal field in PMZT and PNZT films differs; the enhanced internal field upon poling is attributed to (a) alignment of oxygen vacancy—acceptor ion defect dipoles (,) in PMZT films, and (b) thermionic injection of electron charges and charge trapping in PNZT films. In either case, the internal field reduces back switching, enhances the remanent piezoelectric properties, and dramatically improves the aging behavior. PMZT films exhibited the greatest enhancement, with reduced high temperature (180°C) aging rates of 2%‐3%/decade due to improved stability of the poled state. In contrast, PNZT films showed significantly larger high temperature aging rates (15.5%/decade) in the piezoelectric coefficient, demonstrating that the fully poled state was not retained with time. 
    more » « less
  2. The role of interfacial defect chemistry in time dependent breakdown and associated charge transport mechanisms was investigated for Pb0.99(Zr0.52Ti0.48)0.98Nb0.02O3 (PNZT) films. Electrical degradation was strongly dependent on the sign of the electric field; a significant increase in the median time to failure from 4.8 ± 0.7 to 7.6 ± 0.4 h was observed when the top electrode was biased negatively compared to the bottom electrode. The improvement in the electrical reliability of Pt/PNZT/Pt films is attributed to (1) a VO•• distribution across the film due to PbO nonstoichiometry and (2) Ti/Zr segregation in PNZT films. Compositional mapping indicates that PbO loss is more severe near the bottom electrode, leading to a VO•• gradient across the film thickness. Upon degradation, VO•• migration toward the bottom Pt electrode is enhanced. The concentration of VO•• accumulated near the bottom Pt interface (6.2 × 1018/cm3) after degradation under an electric field of 350 kV/cm for 12 h was two times higher than that near the top Pt/PNZT interface (3.8 × 1018/cm3). The VO•• accumulation near the bottom Pt/PNZT interface causes severe band bending and a decrease in potential barrier height, which in turn accelerates the electron injection, followed by electron trapping by Ti4+. This causes a dramatic increase in the leakage current upon degradation. In contrast to the bottom Pt/PNZT interface, only a small decrease in potential barrier height for electron injection was observed at the top Pt/PNZT interface following degradation. It is also possible that a Zr-rich layer near the top interface reduces electron trapping by Ti4+. 
    more » « less
  3. High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications.The materials with the highest piezoelectric chargecoefficients (d33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20%over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PTon the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise fromthe enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals. 
    more » « less