 Home
 Search Results
 Page 1 of 1
Search for: All records

Total Resources1
 Resource Type

00010
 Availability

10
 Author / Contributor
 Filter by Author / Creator


Füredi, Zoltán (1)

Jiang, Tao (1)

Kostochka, Alexandr (1)

Mubayi, Dhruv (1)

Verstraëte, Jacques (1)

#Tyler Phillips, Kenneth E. (0)

#Willis, Ciara (0)

& AbreuRamos, E. D. (0)

& Abramson, C. I. (0)

& AbreuRamos, E. D. (0)

& Adams, S.G. (0)

& Ahmed, K. (0)

& Ahmed, Khadija. (0)

& Aina, D.K. Jr. (0)

& AkcilOkan, O. (0)

& Akuom, D. (0)

& Aleven, V. (0)

& AndrewsLarson, C. (0)

& Archibald, J. (0)

& Arnett, N. (0)

 Filter by Editor


& Spizer, S. M. (0)

& . Spizer, S. (0)

& Ahn, J. (0)

& Bateiha, S. (0)

& Bosch, N. (0)

& Brennan K. (0)

& Brennan, K. (0)

& Chen, B. (0)

& Chen, Bodong (0)

& Drown, S. (0)

& Ferretti, F. (0)

& Higgins, A. (0)

& J. Peters (0)

& Kali, Y. (0)

& RuizArias, P.M. (0)

& S. Spitzer (0)

& Sahin. I. (0)

& Spitzer, S. (0)

& Spitzer, S.M. (0)

(submitted  in Review for IEEE ICASSP2024) (0)


Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $n$vertex graph with more than $\frac{k1}{2}n$ edges contains any $k$edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $r$uniform hypergraph, i.e., a hypergraph where each edge contains $r$ vertices. A tight tree is an $r$uniform hypergraph such that there is an ordering $v_1,\ldots,v_n$ of its its vertices with the following property: the vertices $v_1,\ldots,v_r$ form an edge and for every $i>r$, there is a single edge $e$ containing the vertex $v_i$ and $r1$ of the vertices $v_1,\ldots,v_{i1}$, and $e\setminus\{v_i\}$ is a subset of one of the edges consisting only of vertices from $v_1,\ldots,v_{i1}$. The conjecture of Kalai asserts that every $n$vertex $r$uniform hypergraph with more than $\frac{k1}{r}\binom{n}{r1}$ edges contains every $k$edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $n$ for every $r$ and $k$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $r$tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous ErdősGallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first nontrivial upper bound valid for all $r$ and $k$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices.more » « less