skip to main content


Search for: All records

Award ID contains: 1409797

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Offloading cellular traffic to WiFi networks plays an important role in alleviating the increasing burden on cellular networks. However, excessive traffic offloading brings severe packet collisions into a WiFi network due to its contention-based medium access scheme, which significantly reduces the WiFi network’s throughput. In this paper, we propose DAO, a device-to-device (D2D) communications assisted traffic offloading scheme to improve the amount of traffic offloaded from cellular to WiFi in integrated cellular and WiFi networks. Specifically, in an integrated cellular-WiFi network, the cellular network exploits D2D communications in licensed cellular bands to aggregate traffic from cellular users before offloading it to the WiFi network to reduce the number of contending users in WiFi access. The traffic offloading process in DAO is formulated as an optimization problem that jointly takes into account the activations of aggregation nodes (ANs) and the connections between ANs and offloading users to maximize the offloaded traffic while guaranteeing the long-term data rates required by the offloading users. Extensive simulation results reveal the significant performance gain achieved by DAO over the existing schemes. 
    more » « less
  4. In this paper, we introduce a network entity called point of connection (PoC), which is equipped with customized powerful communication, computing, and storage (CCS) capabilities, and design a data transportation network (DART) of interconnected PoCs to facilitate the provision of Internet of Things (IoT) services. By exploiting the powerful CCS capabilities of PoCs, DART brings both communication and computing services much closer to end devices so that resource-constrained IoT devices could have access to the desired communication and computing services. To achieve the design goals of DART, we further study spectrum-aware placement of edge computing services. We formulate the service placement as a stochastic mixed-integer optimization problem and propose an enhanced coarse-grained fixing procedure to facilitate efficient solution finding. Through extensive simulations, we demonstrate the effectiveness of the resulting spectrum-aware service placement strategies and the proposed solution approach. 
    more » « less
  5. A practical WiFi system only achieves a discrete data rate adjustment due to hardware constraints while channel signal-to-noise ratio (SNR) is continuous. This mismatch leads to the SNR gaps. In this paper, we introduce a novel communication mechanism, CoS (Communication through Silent subcarriers), which turns the wasted SNR gaps into new opportunities for transmitting control messages for free. Compared with traditional piggybacking schemes, CoS is more reliable to transmit control messages from one node to many nodes. In CoS, silent subcarriers are inserted into data packets and the intervals between adjacent silent subcarriers are utilized to encode information. Since the wasted SNR gap results in under-utilization of the channel code, the data bit errors induced by silent subcarriers are corrected by the correcting capability of the existing channel code as long as we carefully design the total number of inserted silent subcarriers. Based on CoS, we design CoS-MAC to validate the effectiveness of CoS. We measure the throughput of free control messages achieved by CoS under various channel conditions and conduct simulations to show the throughput gain achieved by CoS-MAC over the existing schemes. 
    more » « less