skip to main content


Search for: All records

Award ID contains: 1411879

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Relativistic magnetic reconnection is a powerful agent through which magnetic energy can be tapped in astrophysics, energizing particles that then produce observed radiation. In some systems, the highest energy photons come from particles Comptonizing an ambient radiation bath supplied by an external source. If the emitting particle energies are high enough, this inverse Compton (IC) scattering enters the Klein–Nishina regime, which differs from the low-energy Thomson IC limit in two significant ways. First, radiative losses become inherently discrete, with particles delivering an order-unity fraction of their energies to single photons. Secondly, Comptonized photons may pair produce with the ambient radiation, opening up another channel for radiative feedback on magnetic reconnection. We analytically study externally illuminated highly magnetized reconnecting systems for which both of these effects are important. We identify a universal (initial magnetization-independent) quasi-steady state in which gamma-rays emitted from the reconnection layer are absorbed in the upstream region, and the resulting hot pairs dominate the energy density of the inflow plasma. However, a true pair cascade is unlikely, and the number density of created pairs remains subdominant to that of the original plasma for a wide parameter range. Future particle-in-cell simulation studies may test various aspects. Pair-regulated Klein–Nishina reconnection may explain steep spectra (quiescent and flaring) from flat-spectrum radio quasars and black hole accretion disc coronae. 
    more » « less
  2. null (Ed.)
    ABSTRACT Rapid gamma-ray flares pose an astrophysical puzzle, requiring mechanisms both to accelerate energetic particles and to produce fast observed variability. These dual requirements may be satisfied by collisionless relativistic magnetic reconnection. On the one hand, relativistic reconnection can energize gamma-ray emitting electrons. On the other hand, as previous kinetic simulations have shown, the reconnection acceleration mechanism preferentially focuses high energy particles – and their emitted photons – into beams, which may create rapid blips in flux as they cross a telescope’s line of sight. Using a series of 2D pair-plasma particle-in-cell simulations, we explicitly demonstrate the critical role played by radiative (specifically inverse Compton) cooling in mediating the observable signatures of this ‘kinetic beaming’ effect. Only in our efficiently cooled simulations do we measure kinetic beaming beyond one light crossing time of the reconnection layer. We find a correlation between the cooling strength and the photon energy range across which persistent kinetic beaming occurs: stronger cooling coincides with a wider range of beamed photon energies. We also apply our results to rapid gamma-ray flares in flat-spectrum radio quasars, suggesting that a paradigm of radiatively efficient kinetic beaming constrains relevant emission models. In particular, beaming-produced variability may be more easily realized in two-zone (e.g. spine-sheath) set-ups, with Compton seed photons originating in the jet itself, rather than in one-zone external Compton scenarios. 
    more » « less