skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1412624

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerous ATPases associated with diverse cellular activities (AAA+) proteins form hexameric, ring-shaped complexes that function via ATPase-coupled translocation of substrates across the central channel. Cryo-electron microscopy of AAA+ proteins processing substrate has revealed non-symmetric, staircase-like hexameric structures that indicate a sequential clockwise/2-residue step translocation model for these motors. However, for many of the AAA+ proteins that share similar structural features, their translocation properties have not yet been experimentally determined. In the cases where translocation mechanisms have been determined, a two-residue translocation step-size has not been resolved. In this review, we explore Hsp104, ClpB, ClpA and ClpX as examples to review the experimental methods that have been used to examine, in solution, the translocation mechanisms employed by AAA+ motor proteins. We then ask whether AAA+ motors sharing similar structural features can have different translocation mechanisms. Finally, we discuss whether a single AAA+ motor can adopt multiple translocation mechanisms that are responsive to different challenges imposed by the substrate or the environment. We suggest that AAA+ motors adopt more than one translocation mechanism and are tuned to switch to the most energetically efficient mechanism when constraints are applied. 
    more » « less
  2. null (Ed.)