skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1418822

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerical integration of the stiffness matrix in higher-order finite element (FE) methods is recognized as one of the heaviest computational tasks in an FE solver. The problem becomes even more relevant when computing the Gram matrix in the algorithm of the Discontinuous Petrov Galerkin (DPG) FE methodology. Making use of 3D tensor-product shape functions, and the concept of sum factorization, known from standard high-order FE and spectral methods, here we take advantage of this idea for the entire exact sequence of FE spaces defined on the hexahedron. The key piece to the presented algorithms is the exact sequence for the one-dimensional element, and use of hierarchical shape functions. Consistent with existing results, the presented algorithms for the integration of H1, H(curl), H(div), and L2 inner products, have the O(p7) computational complexity in contrast to the O(p9) cost of conventional integration routines. Use of Legendre polynomials for shape functions is critical in this implementation. Three boundary value problems under different variational formulations, requiring combinations of H1, H(div) and H(curl) test shape functions, were chosen to experimentally assess the computation time for constructing DPG element matrices, showing good correspondence with the expected rates. 
    more » « less