skip to main content


Search for: All records

Award ID contains: 1419828

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Coseismic temperature rise activates fault dynamic weakening that promotes earthquake rupture propagation. The spatial scales over which peak temperatures vary on slip surfaces are challenging to identify in the rock record. We present microstructural observations and electron backscatter diffraction data from three small‐displacement hematite‐coated fault mirrors (FMs) in the Wasatch fault damage zone, Utah, to evaluate relations between fault properties, strain localization, temperature rise, and weakening mechanisms during FM development. Millimeter‐ to cm‐thick, matrix‐supported, hematite‐cemented breccia is cut by ∼25–200 μm‐thick, texturally heterogeneous veins that form the hematite FM volume (FMV). Grain morphologies and textures vary with FMV thickness over μm to mm lengthscales. Cataclasite grades to ultracataclasite where FMV thickness is greatest. Thinner FMVs and geometric asperities are characterized by particles with subgrains, serrated grain boundaries, and(or) low‐strain polygonal grains that increase in size with proximity to the FM surface. Comparison to prior hematite deformation experiments suggests FM temperatures broadly range from ≥400°C to ≥800–1100°C, compatible with observed coeval brittle and plastic deformation mechanisms, over sub‐mm scales on individual slip surfaces during seismic slip. We present a model of FM development by episodic hematite precipitation, fault reactivation, and strain localization, where the thickness of hematite veins controls the width of the deforming zones during subsequent fault slip, facilitating temperature rise and thermally activated weakening. Our data document intrasample coseismic temperatures, resultant deformation and dynamic weakening mechanisms, and the length scales over which these vary on slip surfaces.

     
    more » « less
  2. Exhumed faults record the temperatures produced by earthquakes. We show that transient elevated fault surface temperatures preserved in the rock record are quantifiable through microtextural analysis, fault-rock thermochronometry, and thermomechanical modeling. We apply this approach to a network of mirrored, minor, hematite-coated fault surfaces in the exhumed, seismogenic Wasatch fault zone, UT, USA. Polygonal and lobate hematite crystal morphologies, coupled with hematite (U–Th)/He data patterns from these surfaces and host rock apatite (U–Th)/He data, are best explained by friction-generated heat at slip interface geometric asperities. These observations inform thermomechanical simulations of flash heating at frictional contacts and resulting fractional He loss over generated fault surface time–temperature histories. Temperatures of >∼700–1200 °C, depending on asperity size, are sufficient to induce 85–100% He loss from hematite within 200 μm of the fault surface. Spatially-isolated, high-temperature microtextures imply spatially-variable heat generation and decay. Our results reveal that flash heating of asperities and associated frictional weakening likely promote small earthquakes (Mw≈−3 to 3) on Wasatch hematite fault mirrors. We suggest that similar thermal processes and resultant dynamic weakening may facilitate larger earthquakes. 
    more » « less