- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Feldman, Vitaly (1)
-
Ghazi, Badih (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Several well-studied models of access to data samples, including statistical queries, local differential privacy and low-communication algorithms rely on queries that provide information about a function of a single sample. (For example, a statistical query (SQ) gives an estimate of $$\E_{x\sim D}[q(x)]$$ for any choice of the query function $$q:X\rightarrow \R$$, where $$D$$ is an unknown data distribution.) Yet some data analysis algorithms rely on properties of functions that depend on multiple samples. Such algorithms would be naturally implemented using $$k$$-wise queries each of which is specified by a function $$q:X^k\rightarrow \R$$. Hence it is natural to ask whether algorithms using $$k$$-wise queries can solve learning problems more efficiently and by how much. Blum, Kalai, Wasserman~\cite{blum2003noise} showed that for any weak PAC learning problem over a fixed distribution, the complexity of learning with $$k$$-wise SQs is smaller than the (unary) SQ complexity by a factor of at most $2^k$. We show that for more general problems over distributions the picture is substantially richer. For every $$k$$, the complexity of distribution-independent PAC learning with $$k$$-wise queries can be exponentially larger than learning with $(k+1)$-wise queries. We then give two approaches for simulating a $$k$$-wise query using unary queries. The first approach exploits the structure of the problem that needs to be solved. It generalizes and strengthens (exponentially) the results of Blum \etal \cite{blum2003noise}. It allows us to derive strong lower bounds for learning DNF formulas and stochastic constraint satisfaction problems that hold against algorithms using $$k$$-wise queries. The second approach exploits the $$k$$-party communication complexity of the $$k$$-wise query function.more » « less
An official website of the United States government

Full Text Available