skip to main content


Search for: All records

Award ID contains: 1423163

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Prior approaches to AS-aware path selection in Tor do not consider node bandwidth or the other characteristics that Tor uses to ensure load balancing and quality of service. Further, since the AS path from the client’s exit to her destination can only be inferred once the destination is known, the prior approaches may have problems constructing circuits in advance, which is important for Tor performance. In this paper, we propose and evaluate DeNASA, a new approach to AS-aware path selection that is destination-naive, in that it does not need to know the client’s destination to pick paths, and that takes advantage of Tor’s circuit selection algorithm. To this end, we first identify the most probable ASes to be traversed by Tor streams. We call this set of ASes the Suspect AS list and find that it consists of eight highest ranking Tier 1 ASes. Then, we test the accuracy of Qiu and Gao AS-level path inference on identifying the presence of these ASes in the path, and we show that inference accuracy is 90%. We develop an AS-aware algorithm called DeNASA that uses Qiu and Gao inference to avoid Suspect ASes. DeNASA reduces Tor stream vulnerability by 74%. We also show that DeNASA has performance similar to Tor. Due to the destination-naive property, time to first byte (TTFB) is close to Tor’s, and due to leveraging Tor’s bandwidth-weighted relay selection, time to last byte (TTLB) is also similar to Tor’s. 
    more » « less
  2. Sybil attacks present a significant threat to many Internet systems and applications, in which a single adversary inserts multiple colluding identities in the system to compromise its security and privacy. Recent work has advocated the use of social-network-based trust relationships to defend against Sybil attacks. However, most of the prior security analyses of such systems examine only the case of social networks at a single instant in time. In practice, social network connections change over time, and attackers can also cause limited changes to the networks. In this work, we focus on the temporal dynamics of a variety of social-network-based Sybil defenses. We describe and examine the effect of novel attacks based on: (a) the attacker's ability to modify Sybil-controlled parts of the social-network graph, (b) his ability to change the connections that his Sybil identities maintain to honest users, and (c) taking advantage of the regular dynamics of connections forming and breaking in the honest part of the social network. We find that against some defenses meant to be fully distributed, such as SybilLimit and Persea, the attacker can make dramatic gains over time and greatly undermine the security guarantees of the system. Even against centrally controlled Sybil defenses, the attacker can eventually evade detection (e.g. against SybilInfer and SybilRank) or create denial-of-service conditions (e.g. against Ostra and SumUp). After analysis and simulation of these attacks using both synthetic and real-world social network topologies, we describe possible defense strategies and the trade-offs that should be explored. It is clear from our findings that temporal dynamics need to be accounted for in Sybil defense or else the attacker will be able to undermine the system in unexpected and possibly dangerous ways. 
    more » « less