skip to main content


Search for: All records

Award ID contains: 1435957

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electronic information can be transmitted to cells directly from microelectronics via electrode-activated redox mediators. These transmissions are decoded by redox-responsive promoters which enable user-specified control over biological function. Here, we build on this redox communication modality by establishing an electronic eCRISPR conduit of information exchange. This system acts as a biological signal processor, amplifying signal reception and filtering biological noise. We electronically amplify bacterial quorum sensing (QS) signaling by activating LasI, the autoinducer-1 synthase. Similarly, we filter out unintended noise by inhibiting the native SoxRS-mediated oxidative stress response regulon. We then construct an eCRISPR based redox conduit in bothE. coliandSalmonella enterica. Finally, we display eCRISPR based information processing that allows transmission of spatiotemporal redox commands which are then decoded by gelatin-encapsulatedE. coli. We anticipate that redox communication channels will enable biohybrid microelectronic devices that could transform our abilities to electronically interpret and control biological function.

     
    more » « less
  2. Abstract

    Biology uses diffusible oxidants to perform functions that range from signaling to matrix assembly, and these oxidation chemistries offer surprising selectivities. Here, it is reported that mediated electrochemistry can access the richness of such oxidation chemistries. Specifically, electrode‐imposed voltage inputs are used to locally generate oxidized mediators that can diffuse into polymer solutions and induce the formation of covalent bonds for the deposition and functionalization of hydrogels at the electrode surface. Depending on the mediator's redox potential (E0), it is possible to “gate” the voltage inputs to target specific residues (e.g., thiols or amines) and oxidation chemistries. Further, mediators of varyingE0offer different reactivities and thus allow control of reaction‐diffusion rates to modulate the hydrogel's crosslink density and mechanical properties. Importantly, this mediated oxidation can be performed under physiologically relevant conditions to preserve labile biological functionalities (e.g., cell viability and protein function). Finally, it is demonstrated that protein fusion tags can be engineered to have “targetable” amino acid residues that enable protein function to be oxidatively conjugated to electrodeposited hydrogels. In summary, mediated electrochemistry can engage orthogonal oxidation chemistries to create functionalized matrices and thus mediated electrochemistry should add important capabilities to the electrofabrication toolbox.

     
    more » « less
  3. Abstract

    The autoinducer‐2 (AI‐2) quorum sensing system is involved in a range of population‐based bacterial behaviors and has been engineered for cell–cell communication in synthetic biology systems. Investigation into the cellular mechanisms of AI‐2 processing has determined that overexpression of uptake genes increases AI‐2 uptake rate, and genomic deletions of degradation genes lowers the AI‐2 level required for activation of reporter genes. Here, we combine these two strategies to engineer anEscherichia colistrain with enhanced ability to detect and respond to AI‐2. In anE. colistrain that does not produce AI‐2, we monitored AI‐2 uptake and reporter protein expression in a strain that overproduced the AI‐2 uptake or phosphorylation units LsrACDB or LsrK, a strain with the deletion of AI‐2 degradation units LsrF and LsrG, and an “enhanced” strain with both overproduction of AI‐2 uptake and deletion of AI‐2 degradation elements. By adding up to 40 μM AI‐2 to growing cell cultures, we determine that this “enhanced” AI‐2 sensitive strain both uptakes AI‐2 more rapidly and responds with increased reporter protein expression than the others. This work expands the toolbox for manipulating AI‐2 quorum sensing processes both in native environments and for synthetic biology applications.

     
    more » « less
  4. Quorum sensing (QS) is a molecular signaling modality that mediates molecular-based cell–cell communication. Prevalent in nature, QS networks provide bacteria with a method to gather information from the environment and make decisions based on the intel. With its ability to autonomously facilitate both inter- and intraspecies gene regulation, this process can be rewired to enable autonomously actuated, but molecularly programmed, genetic control. On the one hand, novel QS-based genetic circuits endow cells with smart functions that can be used in many fields of engineering, and on the other, repurposed QS circuitry promotes communication and aids in the development of synthetic microbial consortia. Furthermore, engineered QS systems can probe and intervene in interkingdom signaling between bacteria and their hosts. Lastly, QS is demonstrated to establish conversation with abiotic materials, especially by taking advantage of biological and even electronically induced assembly processes; such QS-incorporated biohybrid devices offer innovative ways to program cell behavior and biological function. 
    more » « less