skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1436018

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Semiactive model predictive control (sMPC) can be very effective, but its computational cost due to the inherent mixed-integer quadratic programming (MIQP) optimization precludes its use in real-time vibration control. This study proposes training neural networks (NNs) to predict in real-time only the MIQP's integer variables' values, called a strategy, for a given structure state. Because the number of strategies is exponential in the number of sMPC horizon steps, the resulting NN can be massive. This study proposes to reduce the NN dimension by exploiting the homogeneity-of-order-one nature of this control problem and, using state vector statistics, to efficiently choose training samples. The single large NN is proposed to be split into several much smaller NNs, each predicting a strategy grouping, that together uniquely and efficiently predict the strategy. Given the strategy's integer values, the MIQP optimization reduces to a quadratic programming (QP) problem, solved using a fast QP solver with proposed adaptations: exploiting optimization efficiencies and bounding sub-optimality; using several NN predictions; and reverting to a simpler (suboptimal) semiactive control algorithm upon occasional incorrect NN predictions or QP solver nonconvergence. Shear building examples demonstrate significant online computational cost reductions with control performance comparable to the conventional MIQP-based control. 
    more » « less