- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Makarenkov, Oleg (3)
-
Kamenskii, Mikhail (1)
-
Niwanthi Wadippuli Achchige, Lakmi (1)
-
Niwanthi Wadippuli, Lakmi (1)
-
O. Makarenkov, A. Phung (1)
-
Phung, Anthony (1)
-
Raynaud de Fitte, Paul (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kamenskii, Mikhail; Makarenkov, Oleg; Niwanthi Wadippuli, Lakmi; Raynaud de Fitte, Paul (, Nonlinear Analysis: Hybrid Systems)
-
Makarenkov, Oleg; Niwanthi Wadippuli Achchige, Lakmi (, International Journal of Bifurcation and Chaos)
-
O. Makarenkov, A. Phung (, Dynamics of continuous, discrete and impulsive systems)We describe the behavior of solutions of switched systems with multiple globally exponentially stable equilibria. We introduce an ideal attractor and show that the solutions of the switched system stay in any given epsilon-inflation of the ideal attractor if the frequency of switchings is slower than a suitable dwell time T. In addition, we give conditions to ensure that the epsilon-inflation is a global attractor. Finally, we investigate the effect of the increase of the number of switchings on the total time that the solutions need to go from one region to another.more » « less
An official website of the United States government

Full Text Available