skip to main content


Search for: All records

Award ID contains: 1437003

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study presents a comprehensive design methodology for a magnetorheological-based damper device for a three-dimensional building isolation. The device acts as a suspension system itself by combining the liquid stiffness and controllable magnetorheological damping features in one unit. The bi-linear liquid stiffness feature enhances resistance to global rocking/overturning of the structural system by increasing the stiffness in the rebound mode compared to the compression mode. In the field, the system is combined with the conventional elastomeric bearings widely employed to mitigate the lateral seismic motions. During a seismic event, the system is subjected to dynamic vertical shaking and large lateral forces. The theoretical and simulation modeling to overcome this major challenge and achieve other system requirements are presented. In addition, a comprehensive optimization program is developed to achieve all design requirements. The modeling procedure is verified with experimental results. Also, the effectiveness of Displacement/Velocity-based control for a single degree-of-freedom system subjected to sinusoidal loading is evaluated. 
    more » « less
  2. Seismic isolation systems for buildings are generally selected to achieve higher seismic performance objectives, such as continued operation or immediate occupancy following a design earthquake event. However, recent large scale tests have suggested that these objectives may be compromised if the shaking includes large vertical acceleration components that are damaging to the nonstructural components and contents. Some research has been conducted to develop three dimensional isolation systems that can isolate the structure from both the horizontal and vertical components of ground motion. In several cases, systems have been proposed without much justification of the target design parameters. Rocking has been noted as a potential concern for structures with 3D isolation systems, and complex systems have been proposed to control the rocking. In this study, the fundamental dynamic response of structures with 3D isolation systems is explored. Target horizontal and vertical spectra for a representative strong motion site were developed based on NEHRP recommendations, and horizontal and vertical ground motions were selected that best fit the target spectra when the same amplitude scale factor was applied to all three motion components. Using a simple model of a rigid block resting on linear isolation bearings, the following aspects are evaluated for a wide range of horizontal and vertical isolation periods: response modes and severity of rocking, horizontal and vertical displacement demands in the isolation bearings, and attenuation of both horizontal and vertical accelerations in the structure relative to the ground acceleration. Preliminary results point to a number of useful observations. For example, rocking appears to be an issue only if the horizontal and vertical isolation periods are closely spaced. Helical spring isolation systems that have been applied to a few structures have this characteristic. However, if the horizontal isolation period is large relative to the vertical isolation period, troublesome rocking can be avoided. In addition, other researchers have proposed systems with vertical isolation periods on the order of 2 seconds, which require large displacement and damping capacity. However, preliminary results suggest that vertical isolation periods as low as 0.5 seconds will be effective in attenuating the vertical acceleration. Limiting the vertical isolation period will make design of a 3D isolation system more feasible with respect to vertical displacement capacity and avoiding rocking. 
    more » « less