Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Open Source Hardware allows users to share, customize, and improve designs, thus enabling technological advancement through communities of practice. We propose open source hardware for educational haptics that permits researchers, educators, and students to share designs arising from their different perspectives, with the potential to expand educational applications. In this paper we present a family of open source kinesthetic haptic devices that build upon the design of a previous educational haptic device, Hapkit 3.0. First, we discuss methods for Hapkit personalization and customization that can be achieved by K-12 students and educators. Next, we describe two kinesthetic haptic device designs that evolved from the original Hapkit 3.0. One uses two standard Hapkits with additional components to form a Pantograph mechanism, and the other uses customized Hapkit elements along with a novel kinematic design to form a serial mechanism. These designs are modular; after building two Hapkits, a user acquires a small number of additional parts to transform them into a two-degree-of-freedom device. The Pantograph mechanism was used in an undergraduate class to teach robotics and haptics to both engineering and nonengineering students. Open source designs for all devices as well as tutorials for customization are available at http://hapkit.stanford.edu.more » « less
-
Haptic force feedback systems are unique in their ability to dynamically render physical representations. Although haptic devices have shown promise for supporting learning, prior work mainly describes results of haptic-supported learning without identifying underlying learning mechanisms. To this end, we designed a haptic-supported learning environment and analyzed four students who used it to make connections between two different mathematical representations of sine and cosine: the unit circle, and their graph on the Cartesian plane. We highlight moments where students made connections between the representations, and identify how the haptic feedback supported these moments of insight. We use this evidence in support of a proposed theoretical and design framework for educational haptics. This framework captures four types of haptic representations, and focuses on one -- the haptic bridge -- that effectively scaffolds sense-making with multiple representations.more » « less
-
Embodied, physical interaction can improve learning by making abstractions concrete, while online courses and interactive lesson plans have increased education access and versatility. Haptic technology could integrate these benefits, but requires both low-cost hardware (recently enabled by low-cost DIY devices) and accessible software that enables students to creatively explore haptic environments without writing code. To investigate haptic e-learning without user programming, we developed HandsOn, a conceptual model for exploratory, embodied STEM education software; and implemented it with the SpringSim interface and a task battery for high school students. In two studies, we confirm that low-cost devices can render haptics adequately for this purpose, find qualitative impact of SpringSim on student strategies and curiosity, and identify directions for tool improvement and extension.more » « less
-
Haptic technology has the potential to expand and transform the ways that students can experience a variety of science, technology, engineering, and math (STEM) topics. Designing kinesthetic haptic devices for educational applications is challenging because of the competing objectives of using low-cost components, making the device robust enough to be handled by students, and the desire to render high fidelity haptic virtual environments. In this paper, we present the evolution of a device called "Hapkit": a low cost, one-degree-of-freedom haptic kit that can be assembled by students. From 2013-2015, different versions of Hapkit were used in courses as a tool to teach haptics, physics, and control. These include a Massive Open Online Course (MOOC), two undergraduate courses, a graduate course, and a middle school class. Based on our experience using Hapkit in these educational environments, we evolved the design in terms of its structural materials, drive mechanism, and mechatronic components. Our latest design, Hapkit 3.0, includes several features that allow students to manufacture and assemble a robust and high-fidelity haptic device. First, it uses 3-D printed plastic structural material, which allows the design to be built and customized using readily available tools. Second, the design takes into account the limitations of 3-D printing, such as warping during printing and poor tolerances. This is achieved at a materials cost of approximately US $50, which makes it feasible for distribution in classroom and online education settings. The open source design is available at http://hapkit.stanford.edu.more » « less
An official website of the United States government
