skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1443325

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To define a conserved energy for an atmosphere with phase changes of water (such as vapor and liquid), motivation in the past has come from generalizations of dry energies—in particular, from gravitational potential energy ρgz. Here a new definition of moist energy is introduced, and it generalizes another form of dry potential energy, proportional to θ2, which is valuable since it is manifestly quadratic and positive definite. The moist potential energy here is piecewise quadratic and can be decomposed into three parts, proportional to bu2Hu, bs2Hs, and M2Hu, which represent, respectively, buoyant energies and a moist latent energy that is released upon a change of phase. The Heaviside functions Hu and Hs indicate the unsaturated and saturated phases, respectively. The M2 energy is also associated with an additional eigenmode that arises for a moist atmosphere but not a dry atmosphere. Both the Boussinesq and anelastic equations are examined, and similar energy decompositions are shown in both cases, although the anelastic energy is not quadratic. Extensions that include cloud microphysics are also discussed, such as the Kessler warm-rain scheme. As an application, empirical orthogonal function (EOF) analysis is considered, using a piecewise quadratic moist energy as a weighted energy in contrast to the standard L2 energy. By incorporating information about phase changes into the energy, the leading EOF modes become fundamentally different and capture the variability of the cloud layer rather than the dry subcloud layer. 
    more » « less
  2. Atmospheric flows are often decomposed into balanced (low frequency) and unbalanced (high frequency) components. For a dry atmosphere, it is known that a single mode, the potential vorticity (PV), is enough to describe the balanced flow and determine its evolution. For a moist atmosphere with phase changes, on the other hand, balanced–unbalanced decompositions involve additional complexity. In this paper, we illustrate that additional balanced modes, beyond PV, arise from the moisture. To support and motivate the discussion, we consider balanced–unbalanced decompositions arising from a simplified Boussinesq numerical simulation and a hemispheric-sized channel simulation using the Weather Research and Forecasting (WRF) Model. One important role of the balanced moist modes is in the inversion principle that is used to recover the moist balanced flow: rather than traditional PV inversion that involves only the PV variable, it is PV-and- M inversion that is needed, involving M variables that describe the moist balanced modes. In examples of PV-and- M inversion, we show that one can decompose all significant atmospheric variables, including total water or water vapor, into balanced (vortical mode) and unbalanced (inertio-gravity wave) components. The moist inversion, thus, extends the traditional dry PV inversion to allow for moisture and phase changes. In addition, we illustrate that the moist balanced modes are essentially conserved quantities of the flow, and they act qualitatively as additional PV-like modes of the system that track balanced moisture. 
    more » « less